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Abstract—An electromagnetic analysis of wave propagation in
planar anisotropic transmission-line metamaterials is presented.
It is shown that a planar square-celled grid, series-loaded with or-
thogonal inductors and capacitors and positioned over a ground
plane, is magnetically anisotropic and may be described in terms
of a diagonal permeability tensor. Resonance cone field concentra-
tions form when two of the three diagonal elements of the perme-
ability tensor are opposite in sign and the dispersion surface be-
comes hyperbolic. A theoretical treatment of an electric line cur-
rent source excitation shows that the formation of resonance cones
is a consequence of the singularity associated with the character-
istic surface of a hyperbolic equation. The resonance cone angle,
which also describes the direction of local power flow in the region
between the grid and the ground plane, can be predicted to a good
degree of accuracy. To the authors’ best knowledge, the present
work also verifies experimentally for the first time that current flow
reverses direction across the resonance cone. Experiments, simu-
lations, and analytical calculations of the cone angle are in good
agreement.

Index Terms—Anisotropic metamaterials, counter-flowing cone
currents, hyperbolic dispersion surface, resonance cone.

1. INTRODUCTION

HE objective of this work is to provide a comprehensive
T study of wave propagation in planar anisotropic transmis-
sion-line metamaterials including theory, numerical computa-
tions and experiments. The present work follows directly from
[1] and has its root in the quasi-static theory of antennas in
uniaxial anisotropic plasmas. In that context, resonance cones
emerge as conical high-field regions that extend outward from
the antenna extremities under the condition that two of the three
diagonal elements of the plasma permittivity tensor are oppo-
site in sign. These conical high-field regions have an axis that
is parallel to the static magnetic field and an opening angle that
varies with the incident frequency, the plasma density, and the
static magnetic field strength. In 1969, Fisher and Gould per-
formed the first measurements on these high-field regions and
were also the first to call them resonance cones [2].

Later in the same year, Balmain and Oksiutik [3] noted that
the negative and positive permittivities could be interpreted by
representing the medium in terms of arrays of inductors and
capacitors respectively. Following from this idea, Balmain et
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al. [4] demonstrated experimentally for the first time that reso-
nance cones could exist when a planar square-celled wire grid
is loaded with inductors and capacitors. Furthermore, Balmain
et al. [4] pointed out that if one adopts the somewhat oversim-
plified viewpoint of circuit theory, one finds that the resonance
cone directions are simply the directions of the point-to-point
zeros in reactance measured across the grid surface.

Mathematically speaking, resonance cones are just the con-
ical characteristic surfaces associated with a hyperbolic partial
differential equation, those surfaces being the surfaces along
which discontinuities propagate. Thus, as pointed out in [5],
an anisotropic plasma excited by a point source at a single fre-
quency would exhibit resonance cones since the partial differ-
ential equation for the scalar potential is hyperbolic in the space
coordinates. Of course, this is not confined to electrostatics but
it is also true in the magnetostatic limit, where the partial dif-
ferential equation for the scalar magnetic potential is also hy-
perbolic in the space coordinates [6]. Therefore we should not
be surprised to find that resonance cones also exist in magne-
tized ferrites [7] where two of the three diagonal elements of
the ferrite permeability tensor are opposite in sign. Indeed, it
will be shown further on in this paper, that a planar wire grid
positioned over ground and loaded with arrays of inductors and
capacitors is magnetically anisotropic and possesses a diagonal
permeability tensor where two of the three diagonal permeabil-
ities have opposite signs. In other words, propagation in the
wire grid is governed by a hyperbolic differential equation and
supports the formation of resonance cones. This notion of de-
scribing the metamaterial presented in [4] in terms of of a mag-
netically anisotropic medium is compatible with the analysis
presented in [8]. For the sake of completeness, we should men-
tion that the resonance cone phenomenon is also observed in
unloaded transmission-line grids [9] by utilizing phase cancella-
tion along a prescribed propagation direction. However, in that
context, an effective permeability cannot be defined since the
unit cells are comparable in size to the operational wavelength.
Thus, although the unloaded transmission-line grids exhibit res-
onance cone phenomena, they differ fundamentally from the
structure presented here where the unit cells are much smaller
than a wavelength.

The metamaterial configuration of interest here is based on [4]
and is shown in Fig. 1. It consists of a two-dimensional wire grid
series-loaded with orthogonal capacitors and inductors and posi-
tioned over a ground plane. The existing literature on this meta-
material focuses on numerical simulations and experimental re-
sults [1], [4], [8]. However, there are no theoretical treatments on
subjects such as how the metamaterial is modeled, how waves
propagate within the metamaterial, or how the power flows when
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Fig. 1. Simulation model of the uniform anisotropic transmission-line meta-
material over ground with corner feed and resistive edge-loading. The inductors
are in parallel to the z-axis and the capacitors are in parallel to the y-axis. The
grid boundary is denoted by the white dashed line.

excited by a source. In this paper, we build on the viewpoint of cir-
cuit theory presented in [4] and develop an electromagnetic anal-
ysis of wave propagation in planar anisotropic transmission-line
metamaterials based on a quasi-TEM approximation. By quasi-
TEM, we mean that the longitudinal fields of the propagating
wave are assumed to be negligible [10]. We use the quasi-TEM
approximation to develop the material parameters and show that
the metamaterial can be described by a diagonal permeability
tensor. We show theoretically, and verify through experiments,
that the quasi-TEM approximation provides an accurate descrip-
tion of the fields inside the presented metamaterial. Following
this assumption, we confirm experimentally that the resonance
cone angle can be predicted analytically to a good degree of accu-
racy. Furthermore, we show theoretically how the power flows in
an equivalent, continuous metamaterial when excited by an infi-
nite filamentary electric line current source. Finally, we report for
the first time the experimental observation of the counter-flowing
current distribution across a resonance cone. This type of current
distribution was first found in a quasi-static analysis of an elec-
trically anisotropic homogeneous medium excited by a long fil-
ament of magnetic current [11].

II. EFFECTIVE PERMEABILITY TENSOR

We begin our analysis by determining the effective perme-
ability tensor. This enables us to find the condition under which
two of the three diagonal elements are opposite in sign. Consider
Maxwell’s equations for a propagating wave along a microstrip
line

0B

VxE= -2
X ot

oD
H=—.
V x 5

For a diagonal permeability tensor g and a scalar permittivity e,
(1) can be written in terms of Cartesian components as

OE. OE, OH,

(1a)

(1b)

Y-, 2
dy 02 He =54 (22)
OE, OE. oH,
9z oz Mo (2b)

2743
0E, 0E,  OH.
or oy Mo 20)
and
OH. OH, 0L,
dy 02 o (3a)
OH, OH. OE,
9.  or ol (30)
H, OH E
on, oH, _ oL, (3c)

oz dy ot

For propagation along the x direction, the non-zero field com-
ponents are I/, and H,, since in the context of a quasi-TEM anal-
ysis, propagation in a microstrip line is similar to propagation
in a parallel-plate waveguide where the longitudinal fields are
negligible and E, dominates over £,. Thus, (2) and (3) reduce
to

oFE, 0H,
= 4
ar "o (42)
0H, oL,
or ot (4b)
On the elimination of H,, we get
0%F, OE,
or2 ~ Mo ©)

The voltage V (x) between the microstrip and the ground can be
found by integrating (5) along the height of the substrate. In the
time-harmonic steady-state condition, the integration gives

d*V (z)
dz?

+ w?p,eVi(z) = 0. (6)

Now, the Telegrapher’s equations of a transmission line with
distributed inductance L, (H/m) and capacitance C, (F/m) are
given by

dV(z)
dz
dI(x

dz

= — jwL,I(z) (7a)

~—

= — jwC.V(x) (7b)
On the elimination of I(z), we obtain the second-order differ-
ential equation for the voltage along the transmission line and
get

d*V (x)

Tt w?L,C.V(z) = 0. 8)

Comparing (4) with (7) as well as (6) with (8), we can establish
the equivalences

jty = La ©)
= (10)

Applying the same procedure to propagation in the y direction,
we get

Y
12)
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Now, if the transmission line of length d is loaded with a series

impedance Zj, the effective per unit length inductance becomes
Zs
= La: y | —.
v 0d

Therefore, the impedance is Z; = jwL for a line loaded with a
series inductor and Z; = 1/jwC for a line loaded with a series
capacitor. In this way, we can describe the metamaterial shown
in Fig. 1 by the effective permeability tensor

Leffaessy (13)

pe 0 0
n= 0 py O (14)

0 0 pe

where
_ 1
poe =Ly — 22Cd (15a)
L

py=Lo+ (15b)
N’Z :l'l’O' (150)

For the metamaterial of interest, L, = L, since the intercon-
necting transmission lines have the same properties.

From (15), we see that p,, and j.. are always positive. There-
fore, resonance cones can form only when p,, is negative. From
(15a) this occurs in the frequency range

1

w< —F—.

VL,Cd

III. PROPAGATION CHARACTERISTICS

(16)

Once the permeability tensor is thus determined, we can pro-
ceed to deal with the effects of anisotropy in the metamaterial.
To understand electromagnetic propagation in the metamaterial
whose characteristics are a function of the propagation direc-
tion, it is useful to treat the metamaterial as a uniform homoge-
neous anisotropic medium.

Considering time-harmonic fields in a source-free region with
scalar permittivity ¢ and dyadic permeability p, we can write the
Helmbholtz equation for the magnetic field as

k x (k x H) +w?epu-H = 0. (17)

Substituting (14) into (17) and considering propagation in the
zy-plane, we obtain the dispersion equation

K2k
R (18)
Hy Mz

In the frequency range where i, is negative, the dispersion
equation becomes hyperbolic. Fig. 2 shows the dispersion sur-
face of the metamaterial from 1.0 to 2.0 GHz with L = 3.6 nH
and C' = 2.7 pF. Contour projections of the dispersion sur-
face at 1.0 and 2.0 GHz are projected at the bottom of the graph
which shows the hyperbolic characteristics of the dispersion re-
lation. Furthermore, we can observe that plane-wave propaga-
tion is confined spatially to the regions ¢ < 6. For ¢ > 6, the
wave number is imaginary and propagation is evanescent. This
region is sometimes known as the “shadow region” in plasma
science [12]. The group velocity vector v, and the Poynting
vector S, however, are confined to the interior of the conical
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Fig. 2. Dispersion surface of the metamaterial from 1.0 to 2.0 GHz. Constant
frequency contours at 1.0 and 2.0 GHz are projected at the bottom of the graph.
The asymptotes for the 1.0 GHz surface are shown by the dashed lines. The
angle between the asymptote and the &, d axis is denoted by 6.

regions |tan 5| < tan#f.. The limiting angle 6. for the group
velocity vector is defined by the perpendicular to the asymptote
of the dispersion surface in Fig. 2 and can be evaluated from
(18) as

Hy
z

tanf,. = ‘ (19)

which is the complementary angle of the limiting angle 6 for
the wavevector. Thus, plane-wave propagation for p, < 0 is
confined to certain regions in space and, as we will show in the
next section, if the medium is excited by a line source, the energy
is concentrated along the characteristic surface associated with
the hyperbolic dispersion equation.

IV. POWER FLOW DUE TO AN INFINITE, FILAMENTARY,
ELECTRIC LINE CURRENT SOURCE

Our discussion in the previous section emphasized a quali-
tative interpretation of the field behavior which so far has ig-
nored the presence of excitations. In this section, we continue
our analysis and investigate radiation problems in a uniform ho-
mogeneous anisotropic medium whose permeability tensor is
given by (14). We consider an infinite, filamentary, electric line
current source J oriented parallel to the z-axis and given by

J =1)6(z)6(y)z. (20)

Since the electric line current source extends to infinity in the
z-direction with a zero z derivative, the non-vanishing fields for
propagation transverse to the z-axis are F., H,, and H,. As a
result, the magnetic fields can be written as

1 OF,
Hy=—-——— (21a)
Jwite Oy
1 0F,
y = — . 21b
v Jwity Ox (210)

Introducing the anisotropy factor a> = p,/ju, and defining

5 = w? 1, €, we can see that the inhomogeneous wave equation
for the electric field becomes
0? n 1 92
0z a? 0y?
To solve for the fields, we employ a scaling procedure [13]
and scale equation (22) to reduce the differential operator in the

+ ﬁ§> E. = jwpylod(x)6(y). (22)
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xyz coordinates into a Laplacian operator in the z7z coordi-
nates. Using the scaling factor n = ay and writing the electric
field as

Ez (.il?, 77) = jWMyGIOG(J7> 77) (23)
we can write (22) in the znz coordinates as
02 02 9
(o2 + s + ) Gl =8(o0). 28
Thus the solution to (24) is
Glr.n) = TH (0,127 +1P). 5)

To calculate the field components, we substitute (25) into (23)
and then scale back into the zyz coordinates. Thus, the electric
field becomes

E. = —%uyaIOHéz)(ﬂy\/ z2 + a?y?)

and the magnetic fields can be found by substituting (26) into
(21a) and (21b). Therefore, we have

(26)

sin

H, = fza 3,10 H® (B,pv () o (272)
7 cos
H, = — ﬁaﬁyIOHf) (Byp1(9)) (wf. (27b)

where pr(¢) = v/22 4+ a?y?. In cylindrical coordinates, (27a)
and (27b) can be combined to yield the magnetic field compo-
nents as

H,=H,cosp+ H,sinp

=0 (282)
H,= —H,sinp+ Hy,cosp
-Pylo ()
S H® (B, pv(0)). (28b)
T th (Bypv(e))

Since we are interested in the far-field behavior where p is large,
we can apply the large-argument approximation of the Hankel

functions [14]
27 .
lim H? (z) = \/ —Jj”e_]m
r— 00 ™

and calculate the time-average radiated power density. As a re-
sult, we get

(29)

S, = ERe (-E.H})
wI? ya2 .
= 1671?,) 52(@) l/((p) is real (303.)
0, v(¢p) is imaginary
S, =0 (30b)
S, =0 (300)

Thus, no energy penetrates into the shadow region when the
propagation direction is greater than the limiting angle of the
wavevector since () is imaginary.

2745
If we rewrite the non-zero part of (30a) as
12 .
= w 0 ( /L:vﬂg/ — > (31)
16mp \ iy cos? @ + pgpsin® ¢

we can see that the power density contains a singularity when

Ly cos® ¢ + pysin® o = 0. (32)
Rearranging (32), we get
tanp = ‘& (33)
P

which is exactly the limiting angle for the group velocity vector
shown in (19). Looking at (30), we can see that the singularity
causes the power to concentrate along the direction of .. Fur-
thermore, the singularity renders the total radiated power infi-
nite, an anomaly that is known as the “infinity catastrophe” [15].
The singularity is a result of the lossless material model and
methods to remove it were investigated extensively by Felsen
[16] and Balmain [5]. Equations (26), (28a), and (28b) illustrate
an important point that arises when the dispersion equation of
the metamaterial contains an open branch—the fields diverge on
the shadow boundary, which is just the characteristic surface at
which resonance cones exist [5].

The formulation of the fields in terms of the Green’s function
was obtained from Maxwell’s equations in cylindrical coordi-
nates subject to the constraint 9/0z = 0. Thus, the interpre-
tation of these results follows also from the dispersion surface.
Since the fields are independent of z, the relevant portions of the
dispersion surface are the curves obtained by intersection with
the k, = 0 plane, which are the same curves shown in Fig. 2. Fi-
nally, we should mention that the same result could be obtained
directly by applying duality to the solution presented in [12],
where Felsen solved the problem of radiation due to a magnetic
line current embedded in an anisotropic plasma half-space.

V. FULL-WAVE SIMULATIONS

We employ Ansoft’s HESS to investigate wave propagation in
the metamaterial and whether the quasi-TEM analysis is an ap-
propriate approximation. Simulations provide a means to study
the field distribution inside the metamaterial at points not acces-
sible with experiments. The present paper expands upon the pre-
vious works in part by examining the simulated magnetic fields
within the substrate.

For the representation of the metamaterial shown in Fig. 1,
the lumped components were modeled as zero-thickness finite-
impedance strips joining lengths of finite-thickness microstrip
lines. The simulation model is composed of a wire grid realized
on a 31 mil thick Rogers RO4003C substrate and has 10 by
10 cells, each cell 2.0 mm square. The edges of the grid are
terminated with 50 €2 resistors and are connected to the ground
plane by vias with a diameter of 200 pm. The interconnecting
transmission lines are 16 pm thick and have a characteristic
impedance of 100 2. The substrate dielectric constant is 3.38.
The series-loaded inductance and capacitance are 3.6 nH and
2.7 pF respectively.
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Fig.3. Simulated field plots showing the field distributions and the current den-
sity in the metamaterial at 1.47 GHz. The lightly shaded region shows the lo-
cation where the current density is highest. The size of the arrow head is pro-
portional to the field strength. The insets show the orientation of the board with
respect to the view angle. (a) Poynting vector real part; (b) horizontal magnetic
field (H..,); (c) positive vertical magnetic field (H. > 0); (d) negative vertical
magnetic field (H. < 0); (e) vector current density (J) in the grid plane; (f)
vector current density (J) in the ground plane.

The field distributions within the metamaterial are shown in
Fig. 3, which displays the Poynting vector real part, the mag-
netic fields and the vector current densities at the grid and on the
ground plane. The simulation was performed at 1.47 GHz. For
each graph, the scalar magnitude of the current density is super-
imposed on the ground plane. The lightly shaded region depicts
the path of the resonance cone. Fig. 3(a) shows the Poynting
vector real part calculated in the middle of the substrate. It can
be seen that power flow is directed along the resonance cone.
Fig. 3(b) to (d) show the magnetic field distributions computed
in the middle of the substrate. We can see from Fig. 3(b) that the
horizontal components of the magnetic fields are transverse to
the microstrip lines along the resonance cone. Furthermore, the
vertical components of the magnetic field real part, as shown
in Fig. 3(c) and Fig. 3(d), show that the current flow reverses
direction across the resonance cone, which is also seen in an
anisotropic grid both with and without a ground plane [11]. To
confirm this hypothesis of counter-flowing currents across the
resonance cone, we plot the vector current density calculated at
the grid and the ground plane as shown in Fig. 3(e) and Fig. 3(f).
Furthermore, by comparing Fig. 3(e) and (f), we can see that
the current also flows in opposite directions on the grid and
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Fig. 4. Plots showing the simulated current density magnitude on the ground
plane at three frequencies. (a) 1.00 GHz; (b) 1.47 GHz; (c¢) 2.00 GHz.

the ground plane, which is characteristic of a propagating TEM
wave in a parallel-plate waveguide and confirms the validity of
the quasi-TEM analysis.

To study power flow in the metamaterial, we make use of
the simulated scalar magnitude of the current density which is
shown in Fig. 4 for various frequencies. Since the refractive
index is an implicit function of frequency, we expect the di-
rection of the resonance cone, or power flow for that matter, to
change with frequency. The plot shows the way the resonance
cone orientation scans with frequency over the three frequen-
cies employed. As the frequency is increased, the cone angle
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Fig. 5. Experimental setup showing the near-field scanning probe.

6. increases. This is in agreement with (19), since j, decreases
with increasing frequency. In Fig. 4(c), specular reflection from
the grid edge is visible and is most likely due to impedance mis-
match. Also visible are the two streams of current which is char-
acteristic of the counter-flowing currents mentioned in the fore-
going paragraph.

VI. EXPERIMENTAL RESULTS AND MEASUREMENT TECHNIQUE

We conclude our study by performing resonance cone angle
measurements. The experimental setup is shown in Fig. 5. The
transmit port of the network analyzer is connected to the SMA
connector and the receive port is connected to the near-field
scanning probe (open-ended coaxial cable). In the experiment,
the vertical E-field is picked up by the near-field scanning probe
and the So; is measured which, when plotted on a linear scale,
is approximately proportional to the grid-to-ground voltage.

A straightforward but time consuming approach to measure
the cone angle is to fix the frequency on the network analyzer
and measure the forward transmission magnitude (S2;) at each
node along the edges of the grid as shown in Fig. 6. Thus, the
cone angle is simply the angle 6. between the x-axis and the
line connecting the origin to the node with the largest Ss; mag-
nitude as shown in Fig. 6. In this way, the frequency becomes
the independent variable and the cone angle is the dependent
variable. However, using this method would require us to probe
19 points for each frequency. Depending on the frequency res-
olution of the network analyzer, this would amount to a large
number of measurements. For example, a frequency resolution
of 501 points over the frequency range of interest means that we
must perform over 10,000 measurements.

Alternatively, we can let the cone angle be the independent
variable and measure the frequency at which the So; magnitude
is largest. In fact, this is how Fisher and Gould [17] performed
their resonance cone angle measurements in anisotropic plasma
in their pioneering contributions to the study of resonance cone
phenomena. In this case, the near-field probe would scan along
the edges of the grid from node 1 to node 20, and at each node
a frequency-swept So; measurement would be made. Doing so
allows us to determine the frequency at which the S3; magni-
tude is largest. As a representative example, consider the nor-
malized S2; magnitude response measured at node 15 as shown
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Fig. 6. Schematic view of the metamaterial used in the experiment. Also shown
in the drawing are the measurement points labeled with numbers.
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Fig. 7. Normalized forward transmission magnitude measured at node 15
showing a peak at 1.94 GHz which has a corresponding resonance cone angle
of 63°. The inset shows the normalized S»; magnitude measured across the
surface of the grid at 1.94 GHz.

in Fig. 7. We can see from the plot that the peak magnitude oc-
curs at 1.94 GHz. Since the line joining the origin to node 15
makes an angle of 63° with the z-axis, we can therefore say
that the cone angle at 1.94 GHz is 63°. A plot of the experimen-
tally observed cone angle versus frequency is shown in Fig. 8.
On the same graph, the cone-angle-frequency relationship pre-
dicted by (19) and simulation are plotted. The theory and exper-
iment are in good agreement except in the extreme cases where
the resonance cone is in close proximity to the edge of the grid.
The discrepancies can be seen near the band edges in Fig. 8.
Near the band edges, the resonance cone is almost parallel to
one of the grid edges. Since the grid edges are terminated with
low impedance to minimize reflections, this steers the current
associated with the resonance cone to flow toward the grid edge
and as a result, distorts the measured resonance cone angle from
what is predicted by the theory.
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Fig. 8. Graph showing the experimentally observed resonance cone angle
versus frequency relationship. The solid curve is the one predicted by (19).

VII. EXPERIMENTAL VERIFICATION OF
COUNTER-FLOWING CURRENTS

In the full-wave simulations presented earlier, we had dis-
cussed the notion of currents flowing in opposite directions
across the resonance cone. To verify this concept, we make
use of the S;; magnitude and phase responses at two adjacent
nodes. Consider the resonance cone at 1.94 GHz which is
shown in Fig. 7. The cone angle at this frequency is 63° and the
resonance cone terminates at node 15 along the top edge. For
counter-flowing currents to exist, we would expect to find the
So; response at nodes 14 and 15 to be similar in magnitude and
out-of-phase. Fig. 9 shows the S; magnitude and phase re-
sponses measured at nodes 14 and 15. The magnitude response
shows that the So; magnitudes for node 14 and node 15 are
indeed similar at 1.94 GHz. Thus, the double-peak shown by
the magnitude response curve of node 15 is simply the result of
counter-flowing streams of current running along either side of
the resonance cone core, with the first peak corresponding to a
resonance cone angle of 59° and the second peak corresponding
to the return current of the resonance cone at an angle of 63°.
To wrap up the present discussion, we note from the phase
response plot that the two nodes differ in phase by 133° at 1.94
GHz, a phase difference comparable to the simulated results
given in [11]. In other words, current flow is approximately
out-of-phase across the resonance cone.

VIII. CONCLUSION

A quasi-TEM-based theory to describe fields in planar
anisotropic transmission-line metamaterials has been pre-
sented. It was found that the planar anisotropic transmis-
sion-line metamaterial is magnetically anisotropic and the
dispersion characteristic becomes hyperbolic when two of the
three diagonal elements of the permeability tensor are opposite
in sign. Furthermore, analysis by consideration of an infinite
electric line current source shows that resonance cone forma-
tion is due to the singularity created by the open-branch of the
lossless dispersion equation. This conclusion is consistent with

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 54, NO. 10, OCTOBER 2006

Normalized 821

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
freq (GHz)

120, T T T T T T T
s NoOde 15 . . ' . . .

100} | ™ == Node 14|. _ .

B
BOF- -
Q0L

20 ]

Phase of 321(deg)

. . : :
» IV""“."" ".\l”"ll."\

1 1.1 1.2 1.3 1.4 1.5 16 17 18 19 2
freq (GHz)

Fig. 9. Normalized forward transmission magnitude and phase responses
measured at node 14 and node 15 which confirm experimentally the notion of
counter-flowing currents across the resonance cone.

the circuit theory analogy presented in [4]. In spite of the elec-
tromagnetic interpretation of the resonance cone phenomena
presented here, the circuit theory point of view provides an
intuitive understanding and a valid approximation to resonance
cone formation. Since in circuit theory all interconnect di-
mensions are regarded as having zero length and all lumped
components are regarded as being infinitesimal, therefore in the
present context, resonance cones can be viewed, in simplified
terms, as the directions of the point-to-point zeros in reactance
across the grid surface [4].

Simulation results demonstrate TEM type propagation within
the unit cells of the metamaterial which confirms the validity of
the quasi-TEM approximation. Resonance cone angle measure-
ments were performed and agreed with the simulations as well
as the analytical calculation of the resonance cone angle. Fi-
nally, to the authors’ best knowledge, experimental verification
of counter-flowing currents across the resonance cone is pre-
sented for the first time.

Although the quasi-TEM-based theory is limited to structures
with a ground plane, it provides a basis for device application
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designs. In that context, the resonance cone angle enables us to
examine the allowed directions of energy transport as a function
of frequency and material parameters. In a more general sce-
nario, measurement of resonance cone angle can also be used
as a diagnostic measure to determine the material parameters of
the metamaterial.
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