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The Impedance of a Short Dipole Antenna 
in a Magnetoplasma 

Summary-A formula for the  impedance of a  short cylindrical 
dipole in a magnetoplasma is derived  using quasi-static  electro- 
magnetic theory. The  formula is valid in a lossy plasma  and for any 
dipole orientation with respect  to  the  magnetic field. The dipole im- 
pedance is  found  to  have  a positive real  part  under  lossless conditions 
when  the quasi-static  differential  equation ishyperbolic ; thisindicates 
that  the quasi-static theory  predicts a form of radiation. It  is shown 
that  the quasi-static theory  can  be  interpreted in terms of scaled 
coordinates  and  that a cylindrical  dipole in  a  magnetoplasma  has a 
free  space  equivalent with a  distorted  shape. A conductance correc- 
tion term  obtained  from  Langmuir probe theory  is  shown  to be 
significant. Laboratory  measurements of monopole impedance  are 
compared  with the  theoretical calculations. 

I. ISTRODUCTIOK 

W HEN AN AKTENNA is immersed  in  some me- 
dium,  knowledge of its  impedance  is  important 
whether  the  antenna is regarded as part of a 

communications  system  or  as  a  probe  for  studying  the 
properties of the  medium.  For  the  former  application, 
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energy reflection  from the  antenna  must  be minimized 
and, for the  latter,  the  relationship  between  impedance 
and  medium  properties  must  be well established. The 
foregoing statements  apply especially to  rocket  and 
satellite  exploration of the ionosphere  and  also to  
plasma  diagnostics  in  the  laboratory.  For  these  reasons 
i t  was  decided to  study  both  theoretically  and  experi- 
mentally  the  small-signal  impedance of a short,  cylindri- 
cal  dipole antenna immersed  in  a  magnetoplasma. 

The analysis  is  limited  to  short  antennas  (short  com- 
pared to  a  wavelength) in order to  avoid  the  problems of 
obtaining  theoretically  the  antenna  current  distribution. 
If the  antenna is short  enough,  the  current  may be 
assumed to  vary  linearly  from  a  maximum at  the  center 
to  zero at both  ends.  Furthermore,  a  short  antenna  may 
be  analyzed  conveniently  using  quasi-static  electro- 
magnetic  theory, a method which  (in  free space at 
least)  gives good impedance  results but does  not  predict 
radiation.  In  this  paper a derivation of the  quasi-static 
theory is presented  and i t  is shown that  the  quasi-static 
electric field is identical to  the near field term  in  the 
expressions  derived by Kogelnik [l] and  by  Mittra  and 
Deschamps [2]. Furthermore,  it  is  shown  that  the 
quasi-static  electric field in a magnetoplasma  induces a 
magnetic field, a phenomenon  not  present in isotropic 
media. The  quasi-static field expressions thus  derived 
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are used to  calculate  the  impedance of a  short  dipole  for 
any  orientation  with  respect  to  the  steady  magnetic field. 

There  are  relatively few published  papers  dealing 
with  the  impedance of antennas in  anisotropic  media. 
Kononov, et al. [SI, have  applied  quasi-static  theory to  
the problem of an infinitesimal  dipole but  their field and 
impedance  expressions differ with  those  in  this  paper 
due  to  their choice of an  integration  contour.  Katzin  and 
Katzin  [4]  have  derived  an  impedance  formula  for 
longer  dipoles but  a great  deal of numerical  integration 
would  be  necessary to  extract  impedance  values  from 
their  formula.  Whale [5] has discussed  some aspects of 
the problem,  including the  effect of plasma  wave ex- 
citation on radiation  resistance.  Bramley [ 6 ]  has ob- 
tained  an  impedance expression  valid  for low electron 
density  or  weak  magnetic field. Kaiser [TI has applied 
quasi-static  theory  to  the biconical  dipole  problem and 
has  obtained  impedance  results  similar  to  those  in  this 
paper. 

Some  papers  on  related  topics  should  be  mentioned 
for the  sake of completeness. The  impedance of antennas 
in  conducting  isotropic  media  has  been  studied  by  King 
and Harrison [8] and also by  Deschamps  [9] whose 
impedance  relation is particularly  simple  and useful. 
Quasi-static  theory  has  been  applied  to  propagation 
problems  in  plasmas by Trivelpiece and Gould [ lo]  and 
in  ferrites  by  Trivelpiece, et al. [ll] and  several  other 
authors [12], [Is].  The  paper  by  Bunkin [14] is one of 
the earliest  on  sources  in  anisotropic, cold plasma  and, 
in addition,  a  quasi-static  Green's  function  has been 
discussed by  Tai  [Is]. A  thorough discussion of source 
problems  in  isotropic  warm  plasma  has  been  presented 
by Cohen  [I61  in a series of three  articles. 

11. DERIVATION OF THE BASIC EQUATIONS 
The  impedance  analysis of an  antenna  requires 

knowledge of its  near field. If all the dimensions of the 
antenna  are small  compared to  a  wavelength,  the use of 
an  approximate  near field theory  is  indicated  in  order 

, t o  simplify the otherwise  complicated  calculations.  Such 
an  approximate  theory  can  be  obtained  by first  formu- 
lating  general field expressions and  then  letting  the  an- 
tenna dimensions  become very small  in terms of wave- 
lengths. I t  will be  shown that  the electric field derived 
in  this  manner  is  the  quasi-static field (which can be 
obtained  from a single scalar  potential). 

In a  plasma  with a z-directed dc  magnetic field, 
Maxwell's  equations  are 

V X H = jweoKE + J (1) 

V X E = - jwpoH. (2) 

The  relative  permittivity  matrix K is 

in which 
V 

K o = l - -  u 
A 

U = 1 - jZ = 1 -j( v /w)  , Y = collision frequency 
-AT= electron  density 
BO = dc  magnetic flux density 

w=angular  frequency of signal  source 
--e = electron  charge 
m =electron  mass 
€0 = permittivity of free  space 
po = permeability of free  space 
ko = 2a/Xo = free-space propagation  constant 
X 0  =free  space  wavelength. 

Aleter-kilogram-second units  (rationalized)  are used 
throughout.  Ion  motion  may  be  included  in  the  analysis 
by  the use of appropriate  expressions  for KO, K' and K". 

The first step  is  to  obtain a general field formulation 
valid  for  electromagnetic  problems  in  a  magnetoplasma. 
I t  is  desired to  derive E and H from  a  pair of potentials 
chosen  in such a manner as to  display  the  quasi-static 
electric field as  a distinct  part of the  total electric field. 
The electric and  magnetic fields can be  expressed  in 
terms of a  scalar  potential @ and a vector  potential A, 

The  above  two  relations,  together  with (1) give 

V X V X A - k o 2 K A  = - j ~ p o & V +  + poJ. (6) 

Operation  on (6) with  the divergence  operator  gives 

This  equation  can  be simplified by  introducing  the 
following restriction  on A :  

This is a modified Coulomb  gauge  condition and is  dis- 
cussed  in the Appendix. Eq. (7) becomes 

If q is the  charge  density,  the  equation of continuity 
( V .  J+jwp= 0) puts (9) into  the form 
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which may  be  regarded as a modified Poisson's  equation. 
This  equation  is  widely used and  is  the  quasi-static  dif- 
ferential  equation  for  the  scalar  potential $. 

Solution of the  above  equations  can  be  facilitated  by 
the use of spatial  Fourier  transforms. A transform will be 
indicated  with a tilde (-) and  the  transform  variables 
will be  represented by  the  vector k having  components 
k1, kzI kat 

f(r) = ~ J J ~ - ~ j ( k ) E j k . . d k l d k , d k ~ .  

Transformation of (6) gives 

M A  = wpoeoKk& + p$ (1 1) 

where 

- M A  = k X 2 + ko2KA. 

Transformation of (9) gives 

1 k - j  

WEO k.Kk 
+ = - - - .  

Substitution of (12) in (11) gives 

The field quantities  can be  expressed  in terms of the 
pontentials  by  transforming (4) and (j), 

E = - j(k& + wA) (14) 

H = - k X A .  3 

PO 

In  addition, E and H may  be expressed in terms of by 
noting  that 

-k = ko2M-'Kk. (16) 

This  relation  may  be used in (14) and (15) to  derive  the 
following  expressions: 

E = - jwpOM-lJ (1 7) 

H = j k  X M-lJ. (18) 

An examination of the  equations in the preceding 
paragraphs  suggests that  some  simplification may  re- 
su l t  if E and j are each  separated  into  two  parts as 
follows: 

E =  Eo+E1 J = j 0 + J 1  (19) 

in  which 

- Kk(k*j )  
E o  = - jk$ J o  = 

k . K k  

The following relations  may  be  deduced  readily: 

k X K-'Jo = 0 (21) 

k.91 = 0. (22) 

J1 is  clearly  a  transverse  vector.  However i t  is not  the 
entire  transverse  part of the  current  density since the 
other  part QO is not  longitudinal;  rather, K-ljo is longi- 
tudinal.  Eq. (13) for  the  vector  potential  becomes 

A = poM-'Q1. (23) 

Eqs. (12), (14) and (23) permit  the  two  parts of E to  be 
expressed as 

- j  Eo = - K-'Jo (24) 

E1 = - jwpOM-ljl. (25) 

Eq. (21) shows  that 3 0  is a longitudinal  vector.  However 
i t  is not  the  entire  longitudinal  part of E since in general 
k.E#O. Rather K& is  transverse,  a  fact which may  be 
deduced  from the gauge  condition. An expression for  the 
magnetic field follows from (15) and (23). I t  is 

me0 

fi = jk X M-lJl. (2 6) 

The decomposition of the  current  density  into  two 
parts (a  procedure  suggested by  Deschamps) simplifies 
the  equations  considerably.  Furthermore  it  is  clear  that 
Eo is  derived  entirely  from J o  and  that  both E1 and  Hare 
derived  from J1. Similarly, $ and A are derived  from J o  
and J1, respectively. Thus  the  entire field problem  has 
been  divided into  two  distinct  halves,  one  with  the 
source JO and  the  other  with  the source J1. Although J 
may  be confined to  a  finite region in  space, JO and J1 
both  exist  outside that  region. 

The  theory developed  above  does  not use any  ap- 
proximations  and  is  valid  as long as  the  constant per- 
mittivity  matrix K is a valid  representation  for  the 
properties of the medium.  Limiting  the  general  analysis 
to  short  antennas requires that  the  antenna dimensions 
approach  zero while the wavelength  remains  constant. 
One  way  to  carry  out  this  limiting process  is to  consider 
the  antenna dimensions as being fixed and  to let the 
wavelength  become artitrarily large, that  is, to  let  the 
frequency  approach zero.  Since K O  is a parameter  pro- 
portional  to  frequency,  the  LF  approximation  can 
be effected by  letting ko approach zero. I t  should  be 
noted  that  the  LF  approximation is not applied to  the 
elements of the  permittivity  matrix K ;  that  is, the 
elements of K are  to  be considered fixed as ko approaches 
zero. I t  will be  shown that  the first term of the  approxi- 
mation  gives an electric field equal  to Eo (the  quasi- 
static electric field) and  that  the LF approximation 
gives a magnetic field consisting of two  parts.  One  part 
is the familiar  magnetic field obtainable  from  the  dc 
form of Ampere's  law  and  the  other  part is an induced 
magnetic field which is nonzero  only  in an  anisotropic 
medium. 
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Expansion of the field expression requires  knowledge 
of the  matrices M and M-’ 

in  which d is  the  determinant of M. In  order  to consider 
the  LF  limit,  it  is  necessary to  know the  scalars do, dl ,  dz 
and  the  matrices NO,   NI ,  N2. They  are 

Application of the LF approximation  is  facilitated  by 
carrying  out  two  steps  in  the division operation indi- 
cated in (28). Thus (1 7) becomes 

In  the  analysis of an infinitesimal current  element [l ] , 
[2], the first two  terms  have  been  interpreted  as  near 
field terms because the electric field terms derived  from 
them  are  singular  at  the  current element.  Furthermore 
in the  limit as ko2+0 the first term  evidently  predomi- 
nates.  However,  it  may  be  shown  that  the  first  term  in 
the  above expression is precisely Bo, which has been 
identified as the  quasi-static  electric field. Thus  the 
quasi-static  electric field should  be a good approxima- 
tion  to  the  total electric field close to  a short  antenna in 
a magnetoplasma. 

The  transformed  magnetic field may  be  treated simi- 
larly. If is designated as  the LF limit of H ,  it  can  be 
shown that  
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Further  insight  into  the  meaning of H o  can  be  obtained 
by employing a different  derivation.  Taking  the  curl of 
(1) and  setting V . H =  0 gives 

V2H = - jweoV X KE - V X J. (3 7) 

In  the  LF  or  quasi-static  limit, E= -V$. Substitution 
of this in (37) gives an  equation  in H‘, the  magnetic field 
resulting  when  the  current  and  the  quasi-static  electric 
field are specified. 

VH’  = jw~oV X KV+ - V X J .  (3 8) 

If K is  a  scalar  the  first  term  on  the  right-hand  side  is 
identically  zero  and H’ and J are  related  only  by  the 
point  form of Ampere’s  law  for  direct  currents. A con- 
venient expression  for the magnetic field can  be  ob- 
tained  by  taking  the  Fourier  transform of (38). This 
gives 

I t  can be  shown that  this  LF expression  for H is identi- 
cal to (36) and  thus H‘= Ho. The  advantage of this 
derivation  is  that  it  displays  the LF magnetic field as  
the  sum of two  terms,  the first term being  identically 
zero in isotropic  media  and  the second simply a state- 
ment of Ampere’s  law  for  direct  currents.  The  meaning 
of the first  term  can  be clarified by  relating  it  to  the 
induced  current Ji  which flows in the medium due  to 
the  quasi-static  electric field. If d is the  conductivity 
matrix,  then 

Ji = dEo 

= - JO - jweoEo. (41) 

The induced  current  is seen to consist of two  parts; 
the first part is irrotational  only  when K is a scalar  and 
the second  is always  irrotational.  The  magnetic field 
resulting  from  the  quasi-static  induced  current  is  given 
by 

- j  k X Kk(k . j )  

k2 k - K k  
- -- (42) 

which is exactly  the  first  term of (39). The existence of 
an induced  magnetic field Hi in the  LF  limit  suggests 
that  unusual  electromagnetic effects may  be pre- 
dicted  by  quasi-static  theory  when  it  is  applied  to  prob- 
lems  in  anisotropic  media.  Quasi-static  propagation 
effects  in magnetoplasmas  and  ferrites  have  been  de- 
scribed  in the  literature  in  connection  with source-free 
problems [lo], [ll]; in this  paper  source  currents  are 
included and  it will be  shown that  the  quasi-static 

111. THE FIELD OF A SHORT DIPOLE 
The  quasi-static  differential  equation (10) may  be 

written 

--n 

(43) 

in which u2 =K’/Ko. For  the case of a lossless plasma, 
(43)  is  elliptic [I71  when a2  is  positive and  hyperbolic 
when u2 is negative (see Fig.  1).  Under  hyperbolic  con- 
ditions  the  characteristic  surfaces of the differential 
equation  are  real cones  in  space with  axes  parallel to  the 
z axis. Under  elliptic  conditions  the  characteristic  sur- 
faces are complex and  thus  have no physical  significance. 

The solution of (43) can be  expressed as 

The cylindrical  dipole and  its  coordinate  system  are 
sketched  in Fig. 2. The dipole field will be  derived as- 
suming  the  filamentary,  triangular  current  distribution 
shown in Fig. 3. The corresponding  charge  distribution 
is  obtained  from  the  equation of continuity. 

1 aJ, 
j w  du 

q(r) = - - - G(y)S(o) 

1 
- -- T(u)G(y)F(e). 

j W L  
(45) 

The  function T(u)  is  also  shown in Fig. 3. Substitution 
of q(k )  into (44) and  subsequent  integration will result 
in an expression  for the  potential $. However,  for  im- 
pedance  calculation,  the  electric field parallel to  the 
current (E,) is  required. 

E,(r) = - - 
au 

The  integral I (L)  can  be expressed as 

dkldkzdka. (47) 
k12 + k2’ + - k3’ 

a2 

The following transformation  to  cylindrical  coordinates 

x - L sin 0 = p1 COS +1 k1 = COS ?I 

Y = PI sin 41 k2 = y sin q 

theory  predicts a form of radiation. z - L cos 0 = 21 (48) 
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permits  the  integral  to  be expressed as 

e ~ ~ W g ( y p 1 ) y  

(27rI2 d k32 
Y2 + - 

U2 

I ( L )  = LJ d ~ d k s  (49) 

ELLIPTIC - 
0 
J 
w 
L 1.2 
0 

since 
- 

Li Jo(.ypl) = - COS ( ~ + l ) d g .  
GYRORESONANCE 2T s,’” (50) 

The  next  step involves  contour  integration  with  re- 
spect  to k,. I t  is  convenient t o  designate  by “a” the 
square  root of K‘/Ko which has a positive  real  part, 
however  small.  Under lossless hyperbolic  conditions 
(az negative) the  correct choice for “u” must  be  made 
by taking  the  limit  as  the collision frequency (IJ) ap- 
proaches  zero. The  integration  contours  are  shown  in 
Fig. 4; note  that Cl is used for z1 positive and C2 for 
z1 negative. The  coutour  integration  gives  the following 
expression and  integration  with  respect  to y completes 
the  evaluation of I (L ) :  

0 .e .4 .6 .8  1.0 1.2 1.4 1.6 

X (PROPORTIONAL TO ELECTRON  DENSITY) V 

Fig. 1-The elliptic and hyperbolic  regions. Note: e is the angle (with 
respect to  the z axis) of the  characteristic cone  when the dif- 
ferential  equation is hyperbolic. 

Fig. 2-The cylindrical  dipole and  the  coordinate  system 
(the y axis is directed into  the  paper). 

- (p12 + a2g12)--1/2. (52) 

Similar  expressions  for I(   -L) and I (0)  may  be  derived. 
If i t  is  noted that  (p l ,  a), (p2, z2) and ( P O ,  ZO) are cylindri- 
cal  coordinates  originating at u = L,  u = -L and u = 0, 
respectively (the  ends  and  center of the  dipole),  then 
the electric field parallel to  the dipole may  be expressed 
as 

U 

4?r 

- 2 ( p O 2  + U ~ Z ~ ~ ) - ~ / ~ ] .  (53) 

Under lossless hyperbolic  conditions (a2 real  and nega- 
tive), E,, becomes  infinite  on  three conical surfaces 
emanating  from  the  ends  and  center of the dipole. 
These  surfaces  are  characteristic  surfaces of the  quasi- 
static differential  equation (43). 

T 
Fig. 3-The assumed current  and  charge  distributions. Fig. 4-The integration contours. 
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where S is the  antenna surface.  In  this  formula J is the 
current  density  on  the  antenna  surface  and E is the elec- 
tric field at the  antenna  surface  when  the  conducting 
material  in  the  antenna is removed. The  impedance for- 
mula  may  be  derived using the  “reaction  concept”  and 
such  derivations  have  been  disxssed  frequently  in  text- 
books (Harrington  [l8], for  instance). 

If the  current is  spread  uniformly  over  the  antenna 
surface,  the  current  density (in the  coordinate  system 
of Fig. 5) is given by 

G = 2p(u2 - 1) sin B cos 0 sin 4 

B = p2[1 + (e* - 1) sin2 B sin2 41 (57) 

A’(a) = [ F a 2  + Ga + 
M ( a )  = 2[F(Fa2 + Ga + H)]’ /*  + 2Fa + G. (58) 

The monopole impedance now may be  expressed as 

in  which 

U 
1 - -  

L 
J ,  = 6(r - p) for u > 0 

2TP 

1+-  
L 

23rP 

21 

- - S(Y - p) for u < 0. (55) 

If the dipole  is  very  thin,  the  electric field E may  be 
approximated  by  the field of a current  filament  lying 
along  the  dipole  axis  as  given  by  (53).  In  order t o  
simplify the  calculations,  one  can  obtain  an expression 
for the  impedance of a  monopole length L ;  the im- 
pedance of a dipole of length 2L is just  twice the mono- 
pole impedance. The monopole impedance  is 

The expression  for E ,  may be put  into  the new coordi- 
nate  system  by  the use of  the following  relations: 

p12 = [(u - L) sin e - p cos e sin 412 + [ p  cos 4 1 2  

z1 = (24 - L) cos B + p sin 0 sin 4. 

i 

Fig. 5-The cylindrical  coordinate  system. 

Integration  with  respect  to u gives 

I1 + I* - 2 1 3  

= - [31V(O) - 3K(L) + A’(2L) - X(- L)] 
-1 

FL  

+- In +-- In 
2LF3I2 M3(L)M(-L) F112 

* (60) 
G M ~ ( o ) M ( ~ L )  2 M(o)M(~L) 

”( L) 

If i t  is assumed that  p<<L, then  the  above  formula  takes 
the form 

11+12-213=-{1-1n- 2 F L  
F112 P 

Substitution of the  above  in (59) and  subsequent  inte- 
gration  gives 

2. = 
a 

1n - 1 - In- ’ + ””’] (62) 
2F 

in  which F=sin2 O+a2 cos2 0 and a2= K’/Ko). 

I t  is important  to recall that  in  computing a = (R’/Ko)*’2 
and F‘12, the  square  root  having a positive  real part 
should be used. For  the lossless hyperbolic  case the cor- 
rect sign of the  square  root  must  be  determined by 
taking  the limit as the collision frequency  approaches 
zero;  for  instance, a= ~ a ~ e ~ r ~ 2  for K’>O, Ko<O and 
a = I e-jr12 for K‘<O, Ko>O. 
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Two special  cases are of interest, e= 0 (monopole 
parallel to  BO) and B=n/2 (monopole perpendicular 
to  Bo). 

Parallel  case: 

Perpendicular  case: 

a zi, = ln - -  1 - ln- '1. (64) 
2 

I t  is  interesting to  observe that  the  impedance 
formula (62)  can be  rewritten  in  the  same  form as the 
free-space  impedance [19] if the dimensions L and p are 
suitably  scaled.  That is, 

1 

jw2moL' 
zi, = [in: - 11 (65) 

space  dipole  has a different  length  and an elliptical  cross 
section. The  equivalent dipole  with  circular  cross  section 
has been  shown by Lo [20]  to  have a radius  equal  to  the 
arithmetic  mean of the ellipse  semi-axes. This leads to  
the scale  factors (66) ,   (67)  already  derived.  Thus  the 
scaled impedance  formula  is  quite  general  although  the 
derivation  outlined  above  holds  only  for  positive,  real 
scale  factors.  Further references to  scaling  procedures 
in  anisotropic  media  may  be  found  in  the  papers  by 
Clemmow [21]  and  by Arbel and Felsen [ 2 2 ] .  

I t  is  worth  noting  that,  for  the special  case of a mono- 
pole parallel to BO, an  impedance  formula  may  be  ob- 
tained  without  the  approximation p<<L used to  simplify 
(60) .  The  impedance is 

(In 
( a L  + du2L2 + p 2 ) 2  zi, = 

jw2neoR'L  p(2aL + d/4a2L2 + p z )  

where Although the  approximation p<<L was not used directly 
L' = L d p d K o  sin2 8 f K' cos2 8 (66) in  the  derivation of the  above  formula,  such  an  approxi- 

mation is implicit  in i t  because the source  current dis- 
and  tribution  is  assumed to  be  filamentary  in  the  derivation 

of the electric field formula (53) .  K' ~ F O  
= - 

d K 2  sin2 8 + K' cos2 8 V. DISCUSSIOX 

The  impedance  formula  also  may  be  derived  by 
scaling the  coordinates,  the  frequency w and  the source 
charge  density p. The scale factors  are chosen to  bring 
the  quasi-static  differential  equation  and  the  equation 
of continuity  into  free-space  form.  There  exists a family 
of such  scalings, two of which are  the  most useful. If 
primes are used to designate  the  equivalent free-space 
coordinates,  the  two  scalings  are as follows. 

1)  Frequency-invariant  scaling 

X' = dK'Ko X W' = w 

z' = K' 2. 

2 )  Charge-invariant  scaling 

If scaling  is  applied to  the problem of a thin  cylindrical 
dipole  in a magnetoplasma  and if only  positive,  real 
scale  factors  are  considered,  then  the  equivalent free- 

Under lossless hyperbolic  conditions  each of the  above 
input  impedance  formulas  has a positive  real part indi- 
cating power flow into  the plasma. I t  has  been  shown 
[23]  that, between the  characteristic cones extending 
from the  ends of the dipole, the  Poynting  theorem  also 
indicates power flow arising  from the  quasi-static elec- 
tric field and  the induced  magnetic field H z ;  this sug- 
gests that  the real part of the  antenna  impedance  is  due 
to electromagnetic  radiation.  Kaiser [ 5 ]  also  has  ob- 
served the real part  but he asserts  that  it  is  associated 
with  the  infinity in the electric field. However, a field in- 
finity  occurs  only if the  assumed  current  distribution 
has a discontinuous slope.  Fig. 6 shows  graphically  the 
continuous field produced by a third-order  polynomial 
current  distribution  with  zero  slope at the  ends  and 
center of the dipole. The corresponding  impedance ex- 
pression  for a thin monopole  parallel to  Bo is [23]  

1.2 L 
jw2n~oK'L p 

zi, = (In - - 1.375 + In a )  (51) 

which  is almost  identical  to (63) .  Evidently  the  real 
part of the  impedance is not associated  with  the field 
infinity itself but  rather  with  the  hyperbolic  plasma 
conditions  under which field infinities  can  occur. Further- 
more as  long as  the  current  distribution  is  continuous  it 
apparently  has  little effect on impedance.  However, the 
quasi-static  theory  predicts  infinite power radiation 
from a uniform  current  distribution (which  is not con- 
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Fig. 6-Electric  field discontinuities for two  current  distributions. 

tinuous),  an effect  which has also  been  discussed by 
Arbel and Felsen [22]. 

The  derivation of the  quasi-static  theory  by  the use of 
the  limit ko+O indicates  that  the  impedance  expressions 
obtained will be in error  for  dipoles of finite  length.  This 
error  has  been  estimated [23] by  evaluating  the im- 
pedance  correction  arising  from the second term in ( 3 5 ) .  
The  impedance  correction  has  the  same  form  as  the  im- 
pedance  expressions already  derived  but  it  has in  addi- 
tion a (L/XO)? multiplier. This multiplier  indicates that  
the  impedance  correction  is  small if L<<ho; in the experi- 
mental work to  be  described, the correction term changes 
the  impedance  magnitude  by 20 per  cent a t  cyclotron 
resonance (at which the  error  is  maximum). 

The discussion of radiation effects  holds  for the loss- 
less  case  only and  this lossless condition  is  reached by 
taking  the  limit  as  the collision frequency  approaches 
zero. However, a realistic  evaluation of the  theory can 
be  made  only  after  considering  the case of a nonzero 
collision frequency.  Consider the case of a z-directed 
dipole  and define 7 to  be  the  distance from the dipole. 
Under  isotropic  (or,  more  generally,  elliptic)  conditions 
and  for  large values of 7 ,  E,  = r 3 .  Under lossless hyper- 
bolic conditions, if r is not measured in the direction of 
a characteristic  cone,  then E,  = r-3 (see Fig. 6).  If I is 
measured  in the direction of a  characteristic  cone,  then 
E,= r--l12, a  variation  with  distance which permits  out- 

ward power flow between  conical surfaces.  However,  if 
a  small but  finite  relative collision frequency Z is intro- 
duced, it  may  be shown that  

T 

L 
E, = r 3  for r > (72) 

L 

in  which the  transition region ( 7 -  L / Z )  is an order-of- 
magnitude  approximation.  Thus if r is sufficiently  large, 
the field decay  with  distance  reverts  to  that of a static 
dipole and  the high-level near fields extend  outward  in 
the  characteristic  directions  to  a  distance of about 
L/Z.  Evidently in a lossy medium  “extended  near field” 
describes the phenomenon  better  than  “radiation  field.” 

VI. As ION SHEATH CORRECTION 

Mlodnosky  and  Garriott [24] have  obtained ex- 
pressions  for the  conductance  and  capacitance of a 
cylindrical  dipole in the ionosphere. The  conductance 
term  is  the  slope of a  Langmuir  probe  volta, we-current 
curve  and  the  capacitance  formula  has  the  same  form 
as  that  for a concentric,  cylindrical  capacitor  (the  outer 
cylinder  is the  sheath edge and  the  inner cylinder  is the 
dipole  surface). In the  experiments  to  be  described,  the 
sheath is collapsed so that  only  the  conductance  term 
is used. I t  is given by 

A 
G =  

2(27rwzkT)”’ (73) 

in  which A is the  area of one-half of the dipole, T is the 
electron  temperature  and K is  Boltzmann’s  constant. 
This  conductance is in parallel  with the  impedance 
already  derived.  However,  the  conductance  derivation 
is  for  isotropic  plasma  and  thus i t  is useful only  for low 
values of dc  magnetic field. 

VII. IMPEDANCE  3:IEASUREhPENTS 
The  experimental  apparatus  is  shown  schematically 

in  Fig. 7. The discharge  is  initiated  by a two microsec- 
ond dc pulse and  this is followed b17 the  plasma  decay 
period  (afterglow)  lasting  several milliseconds. In the 
cathode region of the  tube a  small continuous  discharge 
assures  dependable  starting of the pulsed  discharge. The 
vacuum  system is capable of pump-down  to 10-6 mm  Hg 
and  the  evacuated  discharge  tube  can  be back-filled 
with 1 to  10 mm  Hg of neon or helium. 

The resonance  probe  method  [25] is used to  measure 
the electron  density as is shown  in  Fig. 8. Only  the 
X= 1 point is obtained  since  the  measurement  is  made 
using the  same  oscillator  frequency  as in the  impedance 
measurements. The resonance  probe  measurements  are 
made  only at zero dc magnetic field since t h e  presence 
of the  magnetic field tends  to  broaden  and  flatten  the 
resonance  peak. 



614 IEEE  TRANSACTIONS ON ANTENNAS  AND  PROPAGATION 

/I 

I 
P l R u  DISCHLRBE 

NEE 
T O   V A W U U  
SYSTEM 

&muam 05SLUlDR NOTE-  THERE IS A Q C  CONNECTION  BETWEEN THE 
1-2 s MSCHARGE ANOOE AND THE R F. PROBE 

Fig. 7-The experimental  apparatus 

01AS 

OSCILLOSCOPE 

OSCILLOSCOPE  DISPLAY 

I 

I 

L.TIME L T I M E  AT WHICH PLASMA 
RESONANCE OCCURS(W .W.1. 

September 

NOTE: - 
THE  FORMULA w,' = N.' GIVES  ELECTRON  DENSITY N. 

"€0 

Fix. 8-Determination of electron density  by  the "Resonance Probe" technique. 



1964 Balmai.n: Impeda.nce of Skmt Dipole in Nugnetoplasma 615 

T h e   R F  probe  has  the  dimensions L = 8.0 mm  and 
L j p =  12.0. Its  impedance  is  measured at 1.6 Gc using 
the  four-probe  method  [26]  which  involves  photo- 
graphic  recording of the oscilloscope trace a t  four  slotted 
line  positions  spaced Q wavelength  apart.  The  imped- 
ance  measurements  are  presented as loci plotted  on 
Smith  charts in  Figs. 9 to  12).  Each  locus  traces  the 
impedance  from  shortly  after  the  discharge  pulse  to 
complete  deionization (going from  left to  right on the 
charts).  For  comparison,  corresponding  theoretical loci 
are  shown in Figs. 13  and 14. 

The theoretical  graphs  indicate that an increasing 
magnetic field sweeps the  impedance  locus  from  the  top 
of the  Smith  chart  nearly  to  the  bottom;  this effect is 
due  primarily  to  the  factor  1/K’  appearing  in  the  im- 
pedance  expression  (63). A prominent  feature of each 
theoretical  locus is the presence of a “kink” in the 
vicinity of X= 1  (plasma  resonance). This  kink  arises 
from the  logarithm  in  the  impedance  formula  and  is  thus 
related to  the elliptic/hyperbolic  feature of the  quasi- 
static  theory;  the  point X =  1 is  always on the  boundary 
between an elliptic  and a hyperbolic region  (see Fig. 1). 
I t  should be noted that  the line X+ I.’?= 1 is  also an 
elliptic-hyperbolic  boundary for X< 1, Y 2 <  1 ; however, 
the  Smith  chart  graphs  reveal  no  unusual  behavior a t  x = 1 - I.’?. 

In general  there is good qualitative  agreement  be- 
tween  experiment  and  theory. The  movement of the 
impedance loci from the  top of the  Smith  chart  to  the 
bottom  with  increasing  magnetic field is evident  in 
every  experiment.  In all  cases  (theoretical  and  experi- 
mental)  the  cyclotron  resonance  locus ( Y 2  = 1)  meets  the 
rim of the  Smith  chart at right angles. I t  is  particularly 

important  to  note  that  the ion sheath  conductivity cor- 
rection  improves  the  agreement  between  theory  and ex- 
periment a t  low values of dc  magnetic field. For  the case 
of high  magnetic field ( Y 2 >  1) the  correction  is  not 
applicable  and only one  such  locus is shown  in Fig. 14. 

In  each  experiment  (as in the  theory)  the  points X= 1 
follow an approximately  circular  path.  Since  these 
points were determined a t  zero  magnetic field and  since 
an  increasing  magnetic field tends  to increase the  time 
required  for  afterglow  decay,  the  experimental  points 
X= 1 are in  error for Y?> 0. Thus  the  true  plasma 
resonance  points  are  somewhat  to  the  right of the  indi- 
cated  points. 

The  addition of a  small quantity of argon  apparently 
has little effect. This  can be  seen by  comparing  Fig. 9 
with  Fig. 10. In  contrast  to  the  case of argon,  the  addi- 
tion of a very  small  amount of air  has a pronounced 
effect on the  impedance loci (see Figs.  11  and 12). The 
effect of the  addition of air is to  bring  the  experimental 
results  into closer agreement  with  the  theory,  especially 
in the regions of the  plasma  resonance  kinks. The  air 
percentages  indicated on the  graphs  are  rough  approxi- 
mations  obtained  by  extrapolating  a low pressure  leak- 
age  graph  to  5  hours (0.03 per  cent  air at 4.3  mm)  and  to 
25 hours (0.15 per cent  air at 4.3  mm). The  addition of 
air  shortens  the  over-all  decay period and  most of this 
shortening is in  the  early  part of the  afterglow  when  the 
electron  density is high. I t  is  suggested that  the  addition 
of air  tends  to  cause  the  predominance of volume 
processes (recombination,  attachment)  over  surface 
processes  (diffusion) in  the  afterglow  decay.  This 
should  produce a more  uniform  plasma  and  hence better 
agreement  between  theory  and  experiment. 

Fig.  9-Experimental impedance loci for neon. 
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Fig. 11-Experimental impedance loci for neon 
(0.5 per  cent  argon, 0.03 per  cent  air). 

Fig. 12-Experimental impedance loci for neon 
(0.5 per  cent  argon, 0.15 per  cent  air). 

Fig. 13-Theoretical impedance loci for neon.  Fig.  14-Theoretical impedance loci with  ion  sheath  correction. 
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APPENDIX 
THE MODIFIED COULOMB GAUGE CONDITION 

The gauge  condition is 

v . K A  = 0. (74) 

This will be  referred to  as the modified Coulomb  gauge 
condition  because of its similarity  to  the  Coulomb  gauge 
condition 

V.A = 0 (75) 

which is mentioned in various  texts. 
In general, a particular  gauge  condition is chosen in 

order to  simplify  some  aspect of electromagnetic  theory. 
I t  is necessary to show that  the choice of gauge  condi- 
tion  has no effect on the field solution  for E and H and 
that i t  is always possible to find potentials which satisfy 
the  gauge  condition.  Suppose  that A and J/ are  potentials 
which  satisfy Maxwell’s equations  through  the  relations 

E =  - v + - j  UA (76) 

p o H  = V X A. (7 7 )  

I t  is assumed that no restriction  (such  as  a  gauge  condi- 
tion)  has been applied  to A and #. I t  is known that 
Maxwell’s equations  are  invariant  under  a  gauge  trans- 
formation of the  type 

A’ = A + Vp (7 8) 

$’ = p - jU/3 (79) 

in  which A’, $‘ are  the new potentials  and p is the  gauge 
function. If i t  is required that  the new potentials  satisfy 
the modified Coulomb  gauge  condition, (74) becomes 

V - K V P  = - V - K A .  (80) 

Eq. (80) has  the  same form as the  quasi-static  equation 
for the  scalar  potential  and  solutions  for  this  equation 
may  be  obtained  easily.  Thus a gauge  function /3 can 
always  be  found  such that  the  gauge  condition is satis- 
fied. Furthermore  the  invariance of Maxwell’s equations 
under  a  gauge  transformation  assures that  the field solu- 
tions  are  unaffected  by  the choice of gauge  condition. 
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