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Multipath Performance of Adaptive Antennas with
Multiple Interferers and Correlated Fadings

Tien D. Pham,Member, IEEE,and Keith G. Balmain,Life Fellow, IEEE

Abstract—This paper presents an approximate analytical cu-
mulative distribution function of the output signal-to-noise-plus-
interference ratio (SINR) of an adaptive antenna operating in
multipath environments with multiple interferers and correlated
fadings. Previously, approximate analytical results were only
available for the case of one interferer and independent fadings
between antenna branches, whereas in other cases Monte Carlo
simulations had to be used with many limitations including
excessive computer time and inaccurate results for small prob-
ability levels. The distribution, expressed in terms of the mean
eigenvalues of the system, is accurate in most cases investigated
even though it is based on an approximation to the characteristic
function of the output SINR. As a result, a closed-form expression
of bit error rate (BER) for coherent phase-shift keying (PSK) has
been derived based on this approximation.

Index Terms—Adaptive antennas, correlated fadings, multi-
path propagation.

I. INTRODUCTION

W HILE ADAPTIVE antennas operating in nonmultipath
environments have been subject to extensive research

and widely used in military and satellite communications for
interference suppression [1], [2], their ability to reduce both
fading and cochannel interference in multipath environments
has begun to gain interest as an attractive way to increase
system capacity of mobile radio communications [3]–[6].
In the absence of interference, and with noise as the only
undesired signal, an adaptive antenna performs the same task
as a diversity antenna with maximal ratio combining, which
is maximizing the signal-to-noise ratio (SNR). In the presence
of strong interference, however, an adaptive antenna with the
associated optimum combining has a superior performance
compared with maximal ratio combining because the signal-to-
noise-plus-interference ratio (SINR) is subject to optimization.
The performance of an adaptive antenna, or optimum com-
biner, in the presence of interference and thermal noise was
investigated by Winters [3], but the approximate analytical
results are for the case of a single interferer only. For the
case of multiple interferers, Monte Carlo simulations were
used with limitations including excessive computer time and
inaccurate results for small probability levels.
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Another problem needed to be addressed is the evaluation
of adaptive antenna performance in the presence of correlated
fadings, which are caused by either lack of independent
propagation paths, compact designs of antennas, proximity
effects of nearby disturbing objects [7], or a combination of
these factors. In [8], Salz and Winters studied the effect of
correlated fadings on adaptive antennas using Monte Carlo
simulations, where branch correlations were due to narrow
arrival beamwidth of the signals. In a more general scenario,
unequal branch gains should also be considered. While the
performance of maximal ratio combining in the presence of
correlated fadings has been studied by Pierce and Stein [9] and
analytical results obtained for arbitrary branch correlations and
gains, a similar analysis is still needed for optimum combining.

In this paper, an approximate analytical cumulative distribu-
tion function (CDF) of the output SINR of adaptive antennas in
the presence of multiple interferers and correlated flat fadings
will be derived in order to address simultaneously the problems
mentioned above. With the probability density function (PDF)
known, the bit error rate (BER) of an optimum combiner
can be obtained analytically for various modulation schemes.
The results are general in several aspects including arbitrary
branch correlations and branch gains for each of the desired
and interfering signals, taking into account that these signals
may have different propagation conditions and hence their
source distributions at the receiving site may be different.
Furthermore, as a special case of optimum combining, the
CDF for maximal ratio combining with correlated fadings is
the same as obtained previously [9].

II. CDF OF THE OUTPUT SINR OF AN OPTIMUM COMBINER

In the following derivation, unless otherwise stated, capital
bold letters are reserved for matrices, small bold letters are for
column vectors, the superscripts and denote complex
conjugate, transpose and Hermitian transpose, respectively.

A. Background

An adaptive array having branches is shown in Fig. 1.
The complex baseband signal received by theth branch
is multiplied by a controllable weight and the weighted
signals are summed to form the output signal

Consider the general situation of having one desired and
interfering signals transmitted. All signals are assumed to

be narrowbanded and subject to flat Rayleigh fading at each
antenna branch. Let and be the desired andth
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Fig. 1. AnM -branch adaptive antenna with(L+ 1) users.

interfering signals as they are transmitted, respectively, with
the local average power

(1)

where the expectation is taken over a period much less
than the reciprocal of the fading rate. Furthermore, let

(2)

be the complex propagation vector for theth signal. Thus,
is a complex Gaussian random variable that represents

Rayleigh fading of the th signal at the th branch. Since
the signals are transmitted independently, different signals
received at a given branch are assumed to undergo independent
fadings whereas signals received at different branches but orig-
inating from a single source are not necessarily independent
because of mutual coupling and finite spacing between the
branches. Mathematically, the received signals are assumed to
have the following statistics:

for

(3)

and

(4)

is the covariance matrix of theth signal, where denotes
average over Rayleigh fading.

The total signal received at the array consists of the desired
signal, thermal noise, and interference and can be expressed
in vector form as

(5)

where and are the receivedth signal
and noise vectors, respectively, and are defined in the same
manner.

The interference-plus-noise short-term covariance matrix is
given by

(6)

If noise and interfering signals are uncorrelated in short term,
it can be shown that

(7)

where is the identity matrix and we have assumed that all
branches have the same noise power As the
expected value in (7) is taken over a period much less than
the reciprocal of the fading rate, the propagation vectoris
assumed to be constant over this period and we have

(8)

With optimum combining, the output SINR [3] is given by

(9)

Note that is a random variable that varies at the fading rate
and its CDF can be determined as shown in the next section.

B. Derivation of the CDF of Output SINR

Since the propagation vectors are complex,
it is most convenient to introduce the complex multivariate
Gaussian density function of

(10)

where denotes determinant [10, p. 507]. Note that this
definition is possible because is Hermitian. Since all signals
are assumed to have independent fadings, the joint density
function of is given by

(11)

The PDF of the output SINR can be found by first de-
termining the characteristic function of through the Laplace
transform

(12)

Note that , i.e., for so

(13)

(14)
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where

(15)

The exact evaluation of the integral in (14) is shown in
Appendix A with the matrix being Hermitian.

can be rewritten as follows:

(16)
where are the eigenvalues of

They are, equivalently, solutions to the generalized
eigenvalue problem

(17)

The characteristic function given in (13) is just the expec-
tation of with respect to

(18)

which is extremely difficult, if at all possible, to evaluate
exactly. An estimate of can be made by using the
usual technique of expanding in a Taylor
series from which can be expressed in terms of mean,
covariance and higher moments of [11, p. 156]. It
turns out that the first-order approximation

(19)

yields accurate results in most cases. Thus

(20)

The PDF of the output SINR can now be determined by an
inverse Laplace transform of By using a partial fraction
expansion [12, p. 674], can be written as a sum of
simple fractions whose inverse Laplace transforms are known.
The mean eigenvalues appearing in (20) are all real and
positive due to the positive definite and Hermitian nature of

and As will be discussed later, there are
mean eigenvalues of multiplicities one and mean eigenvalue
of multiplicity in the most general case of interest,
i.e., , hence, (20)
can be written in the form

(21)

where

(22)

and

(23)

From the table of inverse Laplace transforms, the PDF is found
to be

(24)

Hence, the CDF of the output SINR is

(25)

As a special case of (20), where all mean eigenvalues are
distinct

(26)

(27)

(28)

(29)

C. Eigenvalue Analysis

The CDF of given by (25), (22), and (23) is general
for optimum combining with correlated branches and
interferers. The whole distribution is specified in terms of the
mean eigenvalues of (17). Only in simple cases are analytical
solutions for the eigenvalues known and hence their means
determined, whereas in other cases we have to resort to Monte
Carlo techniques to determine these values numerically.
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1) Thermal Noise—No Interferer—Correlated Branches:In
the absence of interference, the undesired signals consist
of only thermal noise, and are thus uncorrelated between
branches, i.e. The generalized eigenvalue problem
(17) is reduced to

(30)

which is a deterministic problem where
can be found by any standard method. Since there is no
interference, the adaptive antenna merely works as a diversity
antenna with maximal ratio combining, which has been studied
by Pierce and Stein previously [9].

2) Thermal Noise—One Interferer—Uncorrelated Branches:
Suppose the antenna elements have the same gain and are
separated by sufficiently large element spacings such that the
branch signals are uncorrelated. Then the covariance matrices
of the signals can be written as

(31)

where

(32)

is the average receivedth signal power at theth branch. In
the presence of thermal noise and one interferer, we have

(33)

where is the interference short term covari-
ance matrix. Thus, the generalized eigenvalue problem (17)
becomes

(34)

or

(35)

From here, it can be seen that

(36)

where are the eigenvalues of , which is an
matrix of rank 1. The are given by

for
for

(37)

thus their means are given by

for
for .

(38)

It follows from (36) and (38) that

for
for .

(39)

Normally, the th signal-to-noise ratio defined as

(40)

is known, so the mean eigenvalues can be expressed as

for
for .

(41)

TABLE I
INTRINSIC MEAN EIGENVALUES, ai = h�ii=P1

We see that the smallest mean eigenvalue, which has a
multiplicity of , is proportional to the noise power
while the largest one is proportional to the total interfer-
ence plus noise power. Mathematically, the corresponding
eigenvectors are said to span the noise and interference-plus-
noise subspaces, respectively [13, p. 377]. With the mean
eigenvalues given in (41), the CDF of the output SINR given
by (25) where is fully specified. Essentially the same
results were obtained by Bogachev and Kiselev [14] using
another technique, but their results were given in integral form
which seems less manageable than (25). The results of a four-
branch adaptive antenna with one interferer are shown in the
next section as a special case of the multiple-interferer case.

3) Thermal Noise—Multiple Interferers—Uncorrelated
Branches: This case is similar to case 2 with the interference
short term covariance matrix given by

(42)

whose eigenvalues are no longer as simple as given in (37).
An analytical expression for is at best intricate in some
cases and difficult if not impossible to find in others. By using
a Monte Carlo technique, however, we can determine
and hence numerically. We still assume all branches have
the same average gain [(32)], and furthermore, we assume
all interfering signals have the same strength, i.e.,

The intrinsic mean eigenvalues defined as
are obtained from 10 000 sample Monte Carlo

averaging and are shown in Table I for several values of
and

The mean eigenvalues for each pair in the table
are arranged in ascending order and their sum is seen to be
equal to the total interference power incident upon the array,
which is Since is an matrix of rank ,
we see that only eigenvalues and hence their means are
nonzero for each pair. It is straightforward to show
that the zero eigenvalues give rise to an infinite output SINR
if there is no thermal noise, which explains why an branch
adaptive antenna can null up to interferers. Hence,
it can be expected that if the interference is the dominant
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Fig. 2. The CDF of the output SINR of an adaptive antenna with four uncorrelated branches and several interferers.

source of undesired signals, the output SINR of the array
will be significantly improved over the branch SINR. It is
also interesting to note that the nonzero eigenvalues of the

branch and interferer case are the same as those in the
branch and interferer case. This can be proven to be

valid for any values of and provided: 1) the branches
are uncorrelated; 2) all branches have same average gain; and
3) all interferers have same average power.

It follows from (36) that

(43)

From Table I, (25), and (43), the CDF of the output SINR
can be determined for arbitrary levels of input INR and SNR.
An extended table for larger values of and can be worked
out if one needs to evaluate the performance of larger arrays.

As an example, we calculate the mean eigenvalues of a four-
branch array with several equal strength interferers and plot the
CDF for each case. Let the desired and total interfering signal
powers be 10 dB over the noise level, i.e.,
The mean eigenvalues according to Table I and (43) are:

1) ;
2)

.

Fig. 1 shows the CDF of versus , where

(44)

is the mean branch SINR. The analytical curves are seen to
agree closely with results from 10 000 sample Monte Carlo

simulations. At low-probability levels, the simulation results
tend to deviate randomly around the analytical curves due
to the limited number of samples used in the simulations.
Analytical and simulation results for other INR levels are also
shown in Fig. 2. Due to the normalization of the abscissa,
the branch undesired signal power appears to be constant, so
we see that as the interference power becomes a dominant
part of the undesired signal power, the performance of the
array improves. For , i.e., there is no interference, the
performance is the same as that of a maximal ratio combiner.
For , the performance of the array is improved
by 17 and 13 dB for and , respectively, at 1%
probability level. As the number of interferers increases, the
sum of the interfering signals becomes decorrelated between
branches and behaves more like noise. Therefore, it can be
expected that for the CDF curves should approach
those of the maximal ratio combiner.

4) Thermal Noise—Multiple Interferers—Correlated
Branches: This is the most general case in the sense that
there can be any number of interferers incident upon an array
with arbitrary correlations between the branches and arbitrary
average powers in each. Since the desired and interfering
signals may have different propagation conditions and hence
their angular source distributions at the receiving site can all
be different, their covariance matrices are
most generally not the same. It is not uncommon, however,
that the propagation conditions for one signal are equally
favorable to others, such as in a crowded indoor environment:
then it can be shown that their covariance matrices are either
the same or different just by proportionality constants.

The eigenvalues to be found are solutions to
the generalized eigenvalue problem (17), whereis still given
by (33) and (42), but is no longer proportional to an identity
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Fig. 3. The CDF of the output SINR of an adaptive antenna with two correlated branches and one interferer.

matrix as in (31). In order to find a Monte Carlo technique
is again used, where the random vectors
are generated according to the covariance matrices(see
Appendix B). Unfortunately, there is no simple relationship
between the mean eigenvalues and as in (43) so

have to be determined by a Monte Carlo technique for
particular values of INR’s.

As an example, we calculate the mean eigenvalues for a
two branch array with one interferer. In order to investigate
the effects of unequal branch gains and branch correlation,
we let the desired and interfering signals have the following
covariance matrices:

(45)

where is the branch correlation and is the gain ratio
between the second and the first branches. Furthermore, let
the desired and interfering signal powers be 20 dB over the
noise level, i.e., then we have:

1) ;
2) ;
3) ;
4) .

Fig. 3 shows the CDF of versus for the above cases.
The analytical results for the first three cases are seen to
agree closely with results from 10 000 sample Monte Carlo
simulations except at low-probability levels where the simu-
lation results are not very accurate due the limited number of
samples. For the last case, however, there are small deviations
between analytical and simulation results for probabilities
larger than 0.1. Since simulation results can be expected to

be accurate at such high-probability levels, we conclude that
it is the analytical results that are inaccurate in this case,
recalling that the CDF of is only based on a first-order
approximation of its characteristic function. The deviation
is, however, not very large and we are usually interested in
small probability levels, which are analytically accurate. The
difference in the output SINR’s of cases 1) and 2) is the
performance degradation due to branch correlation. At the 1%
probability level, the degradation is seen to be 6 dB. Similarly,
from case 3), the degradation due to unequal branch gains
is 4.5 dB, whereas a degradation of approximately 10 dB is
seen in case 4) as a result of the combined effects of branch
correlation and unequal branch gains.

D. Convergence of Analytical and Numerical CDF’s

Even though the derived analytical CDF is based on a
first-order approximation of , which is
given by (19), the results are accurate in all but one case
investigated in the previous section. The reason why this first-
order approximation works is because is a well-behaved
smooth function of as is evident from (16), and, therefore,
the high-order terms of the approximation can be expected to
be very small.

In Section C, good agreement between analytical and nu-
merical results by Monte Carlo simulations has been observed
for probability levels as small as 10 By increasing the
number of samples in the simulations, the results can be shown
to agree at even smaller probability levels. Consider again
the four-branch array and several equal strength interferers
with Fig. 4 shows the numerical results of
100 000 and 1 000 000 sample simulations, which evidently
converge toward the analytical CDF for all probability levels
down to 10 Similarly, for the case of the two-branch array
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Fig. 4. Same as in Fig. 3 withL�1 = 100 and the number of samples in the simulations increased to 100 000 and 1 000 000.

Fig. 5. Same as in Fig. 3 witha2 = 1; �2 = 0:9, and the number of samples in the simulations increased to 100 000 and 1 000 000.

having correlation coefficient and one interferer with
, Fig. 5 shows the convergence of the numerical

results as the number of samples increases from 100 000 to
1 000 000.

As discussed under point 4) in Section C, the mean eigen-
values must be determined by a Monte Carlo technique for
the case of correlated branches. While one may think that
this defeats the purpose of deriving the analytical CDF, the

CDF expressed in terms of the mean eigenvalues still offers a
significant advantage over full Monte Carlo simulation because
determining the mean eigenvalues requires fewer samples by
far than finding the numerical CDF directly. Once the mean
eigenvalues have been found, the distribution is fully known,
i.e., the probability at any output level can be found.

Consider for example an array having five correlated
branches and three equal strength interferers with
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Fig. 6. The analytical CDF’s of the output SINR of an adaptive antenna with five correlated branches and three interferers. The CDF’s are based on mean
eigenvalues calculated by Monte Carlo technique with different numbers of samples.

TABLE II
MEAN EIGENVALUES OF AN ADAPTIVE ANTENNA

WITH FIVE CORRELATED BRANCHES AND THREE

INTERFERERS, CALCULATED WITH DIFFERENT SAMPLE SIZES

Assume that the desired and interfering signals have the
following covariance matrix:

(46)

The mean eigenvalues calculated by the Monte Carlo tech-
nique with different numbers of samples are listed in Table II,
which shows small differences between calculations, espe-
cially for those cases with the highest numbers of samples. The
analytical CDF’s based on these sets of mean eigenvalues are
shown in Fig. 6. It is evident that the CDF’s converge quickly
as the number of samples increases. For 1000 and 10 000
samples, the CDF’s are almost indistinguishable. It is worth
noting that even when the number of samples is as small as ten,
the approximate CDF is less than 0.5 dB from the converged
CDF at all probability levels. For comparison, numerical
CDF’s obtained from Monte Carlo simulations are shown in

Fig. 7 with the converged analytical CDF. Only the CDF with
1 000 000 samples is seen to match closely with the analytical
CDF at all probablity levels shown. The central processing
unit (CPU) time for the 1 000 000 sample simulation is 19 350
s, which is approximately 1000 times longer than that of 1000
sample calculation of the mean eigenvalues. If the numerical
CDF is to be determined at probability levels lower than 10,
even more samples will be needed. Because of limitations in
computer memory and CPU time, the Monte Carlo approach
becomes impossible below a certain probability level, leaving
the analytical CDF as the only known method to determine
the SINR performance of an adaptive antenna with correlated
branches at extremely low-probability levels.

E. BER Performance for Optimum Combining

In digital mobile communications, the average BER for
coherent detection of phase-shift keying (PSK) signals is given
by

BER (47)

where is the PDF of the output SINR.
Substituting (24) into (47), we have the BER performance

for optimum combining with multiple interferers and corre-
lated fadings

BER

(48)
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Fig. 7. The CDF of the output SINR of an adaptive antenna with five correlated branches and three interferers.

In order to evaluate (48), we need the following general
integral formula [15]:

(49)

where are binomial
coefficients and

From (48) and (49), we get

BER

(50)

where and are given by (22) and (23), respectively. For
the simple case of all distinct mean eigenvalues ,
we have

BER (51)

where is given by (27).

The BER versus mean branch SINR of adaptive antennas
with several uncorrelated branches and two equal strength
interferers is shown in Fig. 8. Note that the mean eigenvalues
in (50) or (51) can be expressed in terms ofand as

(52)

which follows directly from (43) and (44). These analytical
results agree closely with results from 100 000 sample Monte
Carlo simulations by Winters [3].

Similarly, for the case of arbitrary branch correlations and
gains, one can determine the mean eigenvaluesof (17) for

The mean eigenvalues for any values ofare

(53)

assuming that all are kept unchanged.

III. CONCLUSIONS

In this paper, an approximate analytical CDF of the output
SINR of an adaptive antenna with correlated branches and
multiple interferers in flat Rayleigh fading environments has
been derived. Even though the distribution is based on an
approximation to the characteristic function of the output
SINR, it is accurate in all but one case investigated, namely, at
high-probability levels when there are high branch correlations
and large differences between branch powers.
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Fig. 8. The BER versus the mean branch SINR for adaptive antennas with several uncorrelated branches and two equal-strength interferers.

In the case of uncorrelated branches, the intrinsic mean
eigenvalues for systems with several branches and equal-
strength interferers have been tabulated. With this table, the
mean eigenvalues for systems with arbitrary SNR and INR
can be determined. Thus, the distribution offers a quick and
accurate way to evaluate the performance of an adaptive an-
tenna in multipath environments, especially at low-probability
levels where results by Monte Carlo simulations are either
unreliable or impractical because of limitations in computer
time or memory.

In the case of correlated branches, the mean eigenvalues
have to be determined numerically for particular values of
INR’s by a Monte Carlo technique. Nevertheless, the CDF
expressed in terms of these mean eigenvalues still offers sig-
nificant advantages over full Monte Carlo simulations because
determining the mean eigenvalues requires fewer samples by
far than finding the CDF directly. Furthermore, once the mean
eigenvalues have been found, the distribution is fully known,
i.e., the probability at any output level can be determined
accurately.

As a result, a closed-form expression of BER for coherent
PSK has been derived based on the above approximation. With
the CDF available in terms of elementary functions, closed-
form expressions of BER for many other digital modulations
can be derived.

The CDF thus found should provide a powerful analyti-
cal tool for evaluation of adaptive antenna performance in
multipath environments. With multiple interferers taken into
account, the result is expected to be valuable in designing
multiple-user radio systems where optimum combining is
implemented to enhance interference tolerance and increase
capacity [4]. With branch correlation and unequal branch gains
considered, we can realistically estimate the performance of
compact adaptive antennas, where design constraints and prox-

imity effects of nearby disturbing objects often make the as-
sumption of independent and equal-gain branches invalid [7].

APPENDIX A

Let

(A-1)

where and are two real vectors of dimension
and and two real matrices of dimension
Furthermore, assume to be Hermitian. Define

(A-2)

It can be shown readily that which is a real
scalar, and hence

(A-3)

The right-hand side of (A-3) can be evaluated exactly [16,
p. 118] as

(A-4)

Since [10, p. 557]

(A-5)

we have from (A-3) to (A-5)

(A-6)
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APPENDIX B

Monte Carlo simulations of optimum combining with corre-
lated branches require in general the generation of a zero-mean
complex Gaussian random vectorwith covariance matrix
This can be done by first generating a vector, whose elements
are zero-mean unit-variance uncorrelated complex Gaussian
random variables. The random vectorcan then be generated
from [17, p. 251] by

(B-1)

where is a matrix whose columns consist of an orthonormal
set of eigenvectors of and is a diagonal matrix that
consists of the square roots of the eigenvalues ofSince
a covariance matrix is always Hermitian and nonnegative
definite [11, p. 190], its eigenvalues are always real and
nonnegative, and the existence of a real is guaranteed.
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