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Multipath Performance of Adaptive Antennas with
Multiple Interferers and Correlated Fadings

Tien D. Pham Member, IEEE,and Keith G. BalmainLife Fellow, IEEE

Abstract—This paper presents an approximate analytical cu-  Another problem needed to be addressed is the evaluation
mulative distribution function of the output signal-to-noise-plus-  of adaptive antenna performance in the presence of correlated
interference ratio (SINR) of an adaptive antenna operating in fadings, which are caused by either lack of independent

multipath environments with multiple interferers and correlated ti th t desi f ant mit
fadings. Previously, approximate analytical results were only propagation paths, compact designs ol antennas, proximity

available for the case of one interferer and independent fadings €ffects of nearby disturbing objects [7], or a combination of
between antenna branches, whereas in other cases Monte Carlothese factors. In [8], Salz and Winters studied the effect of
simulations had to be used with many limitations including correlated fadings on adaptive antennas using Monte Carlo
excessive computer time and inaccurate results for small prob- i 1ations. where branch correlations were due to narrow
ability levels. The distribution, expressed in terms of the mean . P . .
eigenvalues of the system, is accurate in most cases investigate(‘:fm'val beamwidth °,f the signals. In a more Qe”efa' Sce_narlo,
even though it is based on an approximation to the characteristic Unequal branch gains should also be considered. While the
function of the output SINR. As a result, a closed-form expression performance of maximal ratio combining in the presence of
of bit error rate (BER) for coherent phase-shift keying (PSK) has  correlated fadings has been studied by Pierce and Stein [9] and
been derived based on this approximation. analytical results obtained for arbitrary branch correlations and
Index Terms—Adaptive antennas, correlated fadings, multi- gains, a similar analysis is still needed for optimum combining.
path propagation. In this paper, an approximate analytical cumulative distribu-
tion function (CDF) of the output SINR of adaptive antennas in
the presence of multiple interferers and correlated flat fadings
L . will be derived in order to address simultaneously the problems
H”"_E ADAPTIVE antennas op_eratmg in non_mumpathmentioned above. With the probability density function (PDF)
environments have been subject to extensive reseafgfyyn, the bit error rate (BER) of an optimum combiner
and widely used in military and satellite communications fQfan pe obtained analytically for various modulation schemes.
interference suppression [1], [2], their ability to reduce bote results are general in several aspects including arbitrary
fading and cochannel interference in multipath environmengs,neh correlations and branch gains for each of the desired
has begun to gain interest as an attractive way 10 INCreagey interfering signals, taking into account that these signals
system capacity of mobile radio communications [3]-[6}ay have different propagation conditions and hence their
In the absence of interference, and with noise as the only,rce distributions at the receiving site may be different.
undesired signal, an adaptive antenna performs the same 'i"—aéhhermore, as a special case of optimum combining, the

as a diversity antenna with maximal ratio combining, WhicRpg for maximal ratio combining with correlated fadings is
is maximizing the signal-to-noise ratio (SNR). In the presen¢fe same as obtained previously [9].

of strong interference, however, an adaptive antenna with the
associated optimum combining has a superior performance
compared with maximal ratio combining because the signal-téh  CDF oF THE OUTPUT SINR OF AN OPTIMUM COMBINER

noise-plus-interference ratio (SINR) is subject to optimization. | the following derivation, unless otherwise stated, capital
The performance of an adaptive antenna, or optimum COR|q letters are reserved for matrices, small bold letters are for
biner, in the presence of interference and thermal noise Wa§,mn vectors. the superscrigts T, and H denote complex

investigated by Winters [3], but the approximate analyticglnjugate, transpose and Hermitian transpose, respectively.
results are for the case of a single interferer only. For the

case of multiple interferers, Monte Carlo simulations wer

I. INTRODUCTION

used with limitations including excessive computer time and Background
inaccurate results for small probability levels. An adaptive array having/ branches is shown in Fig. 1.
The complex baseband signal received byithebranche; (¢)
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w7 The interference-plus-noise short-term covariance matrix is

‘ Branch1 given by
User 0 oA
R /// x](t)//w% \\ I I H
ﬂ’ / - VBranch 2 4 47 ™ Output ¢=E Z zjtn Z Tj+n ’ (6)
R - } > j=1 j=1
] A0 /j Tt e ! !
- 2 / . . . . .
- / If noise and interfering signals are uncorrelated in short term,
. . / it can be shown that
\ /
Userl 7 % BranchM /,/ L
g ! D \/7 it 2 H
\/ w0 © =0T+ Eluul] )
M j=1

where is the identity matrix and we have assumed that all
branches have the same noise pou#n,;n}] = 0. As the
expected value in (7) is taken over a period much less than
interfering signals as they are transmitted, respectively, withe reciprocal of the fading rate, the propagation veatois

Fig. 1. An M-branch adaptive antenna wittL + 1) users.

the local average power assumed to be constant over this period and we have
. L
Els;()] =1, 0<y<L 1) ‘PIU?I—FZ’Ugﬂf- (8)
j=1
where the expectation| ] is taken over a period much less _ N ’ o
than the reciprocal of the fading rate. Furthermore, let With optimum combining, the output SINR [3] is given by
_ . HFiz—1
wj = [ujy - uing]’ 0<;<L 2) 7 =up 7w ©)

i ) i Note thaty is a random variable that varies at the fading rate
be the complex propagation vector for thign signal. Thus, 4.4 its CDF can be determined as shown in the next section.
u;; IS a complex Gaussian random variable that represents

Rayle_igh fading of thejf[h signal at theith bra_mch. Singe . Derivation of the CDF of Output SINR
the signals are transmitted independently, different signals i
received at a given branch are assumed to undergo independefince the propagation vectous, 0 < j < L are complex,
fadings whereas signals received at different branches but offglS Most convenient to introduce the complex multivariate
inating from a single source are not necessarily independ&fussian density function af;
because of mutual coupling and finite spacing between the 1 R .
branches. Mathematically, the received signals are assumed fo(u;) = W exp(—u; R; ), 0<y<L (10)
have the following statistics:

where | | denotes determinant [10, p. 507]. Note that this

(uj:) =0 definition is possible becaug®; is Hermitian. Since all signals
(uju,) =0, for0<j,i<L,1<ik<Mj#l are assumed to have independent fadings, the joint density
’ -0 T - - function of w;,---,wu, is given b
(3) 7 7 g y
L
and Puluo, -+ ur) = [[ pi(wy). (11)
j=0
(winwj) o {ugrulny) .
i = (ujuf> = () Th_e_ PDF of the output. SINR can be found by first de-
(pnraly) oo (ugnrtyg) termining the characteristic function of through the Laplace
transform

is the covariance matrix of thgh signal, where( ) denotes g

average over Rayleigh fading. Y(z) :/0 p(v) exp(=z7) dr. (12)
The total signal received at the array consists of the desired

signal, thermal noise, and interference and can be expresbége thaty = 0, i.e., p(v) = 0 for v < 0, so

in vector form as U(z) = (exp(—27))
L L i -
:c:Z $j+n:Z u;S;+n 5) :/_Oo /_Oo pulto, - 1)
J=0 =0 -exp(—zull @ ug) duo - - - dur, (13)

. 1 . . o> o>

where:q =[z1am]t x; a_ndn are the recel\./eglthl signal / pr(wy), - pr(ur) dug - - dug,
and noise vectors, respectively, and are defined in the same —oo —oo

manner. - G(zu1, - ur) (14)
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where where
Glzur, - ur) Bi= lim {¥(=)(z+ ()} (22)
I/ po(uo) exp(—zull @~Lug) dug ‘
70; e H L . and
= W /_Oo exp[—ug (Ry ™~ + 207 uo) duo 1 e
M Cz - - li @
= M1 17r (M —N—9)! z—>11<r>l\M> <dz>
7 |R01| IRy + 201 () (2 + ) (23)
= l
I+ zRo® 1| (15)

From the table of inverse Laplace transforms, the PDF is found

The exact evaluation of the integral in (14) is shown itp be
Appendix A with the matrixRy* + z®~! being Hermitian.

G(z,u1,---,ur) can be rewritten as follows: p(y) =L HU(2)}
N
1
Gz, un) =Gz A, Ay) = 70— = Z B; exp(—(Ai)v)
1 z =1
H < + )\_Z> M—N im1
=1
(16) + Z Ci G- exp(—(Am)v).  (24)
where Ay, ---, Ay are the eigenvalues ofRy®1)~! = =1

<I>Rgl. They are, equivalently,

solutions to the generalize .
eigenvalue problem Iqence, the CDF of the output SINR is

-
The characteristic function given in (13) is just the expec- ](\J, M—N
tation of G(z, A1, -+, Ar) with respect toA;,---, Ay _ fz [1— exp(—(\:)] + Z )\Oi
U(z) = Gz A Aun) (18) =a =
L o . 7k
which is extremely difficult, if at all possible, to evaluate 1= (=)L (29)
exactly. An estimate ofl’/(») can be made by using the = '
usual technique of expanding(z, Ay, --,Ar) in a Taylor

s a special case of (20), where all mean eigenvalues are

series from which¥(z) can be expressed in terms of mear,”
distinct (N = M)

covariance and higher moments.xf, - - -, Aps [11, p. 156]. It
turns out that the first-order approximation

B;
Gz, AL, An)) 2 Gz (M), (Au))  (19) V(z) = 00 (26)
i=1 *
yields accurate results in most cases. Thus B;= lim ;{¥()(z+M\)}
Z——(A;)
M M M
1 (A1) (Ax)
U(z) = = < ) (20) = <7 (27)
£[1 1+ d £[1 Z+ <)\Z> k:ll_’{#i Ay — (M)
(zi) "
The PDF of the output SINR can now be determined by an p(y) = Z B; exp(— (X)) (28)
inverse Laplace transform d@f(z). By using a partial fraction i=1
expansion [12, p. 674]¥(z) can be written as a sum of M p
simple fractions whose inverse Laplace transforms are known. P(vy) = <)\?> [1 — exp(—(Ai)7)] (29)
The M mean eigenvalues appearing in (20) are all real and i=1 "

positive due to the positive definite and Hermitian nature of
® and Ry. As will be discussed later, there aré, N < M C. Eigenvalue Analysis

mean eigenvalues of multiplicities one and mean eigenvaluerhe CDF of y given by (25), (22), and (23) is general
of multiplicity (A — N) in the most general case of interestior optimum combining withM correlated branches ankl

e, (A1) # -+ # (Av) # (Awvqa) = -+~ = (M), hence, (20) interferers. The whole distribution is specified in terms of the
can be written in the form mean eigenvalues of (17). Only in simple cases are analytical
N ‘ M—N C. solutions for the eigenvalues known and hence their means

B; ) .
U(z) = Z T ow + Z Gromy (21) determined, whereas in other cases we have to resort to Monte
i=1 " * i=1 M Carlo technigues to determine these values numerically.
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1) Thermal Noise—No Interferer—Correlated Branchés: TABLE |
the absence of interference, the undesired signals consist INTRINSIC MEAN EIGENVALUES, a; = {a;)/ Py
of only thermal noise, and are thus uncorrelated between L=1 2 3 4 5
branches, i.e® = o%I. The generalized eigenvalue problem—;,—; 00 200 300 700 500
(17) is reduced to 2 0.00 0.50 112 1.81 2.54
O'2I‘U _ )\Rov (30) 2.00 3.50 4.88 6.19 7.46
0.00 0.00 0.33 0.79 1.32
which is a deterministic problem whet;) = A;,1 < i < M b o post oo P
can be found by any standard method. Since there is no—— 000 000 0.00 025 061
interference, the adaptive antenna merely works as a diversity 0.00 0.00 0.79 157 237
antenna with maximal ratio combining, which has been studied P o e Pt oa
by Pierce and Stein previously [9]. e 000 0.00 0.00 000 020
2) Thermal Noise—One Interferer—Uncorrelated Branches: 0.00 0.00 0.00 0.61 1.24
Suppose the antenna elements have the same gain and are oo 9% e ol S
separated by sufficiently large element spacings such that the 5.00 7.46 9.52 11.39 13.16

branch signals are uncorrelated. Then the covariance matrices
of the signals can be written as
, We see that the smallest mean eigenvalue, which has a
;=P <3< .. . . '
R; =Bl 0<js<i (31) multiplicity of (M — 1), is proportional to the noise power
where while the largest one is proportional to the total interfer-
. . ence plus noise power. Mathematically, the corresponding
By = (ujing), l=i<M (32) eigenvectors are said to span the noise and interference-plus-
is the average receiveidh signal power at théth branch. In Noise subspaces, respectively [13, p. 377]. With the mean

the presence of thermal noise and one interferer, we have €igenvalues given in (41), the CDF of the output SINR given
by (25) whereN = 1 is fully specified. Essentially the same

® =01+, (33) results were obtained by Bogachev and Kiselev [14] using

where &, = wul! is the interference short term covari-anOther technique, but their results were given in integral form

ance matrix. Thus, the generalized eigenvalue problem (]\[?Si(:h seems less manageable than (25). The results of a four-
anch adaptive antenna with one interferer are shown in the

becomes ) ) . .
next section as a special case of the multiple-interferer case.
(oI + @,)v = A\Pyw (34) 3) Thermal Noise—Multiple Interferers—Uncorrelated
or Branches: This case is similar to case 2 with the interference
short term covariance matrix given by
O,v= (NP — 02)11. (35) L
. _ H
From here, it can be seen that O, =Y wul (42)
j=1
0 =MNPo—o2,  1<i<M (36) ’

_ o whose eigenvalues are no longer as simple as given in (37).
where «; are the eigenvalues ob,,, which is anM X M An analytical expression fow; is at best intricate in some

matrix of rank 1. Thex; are given by cases and difficult if not impossible to find in others. By using
0, for1<i<M-1 a Monte Carlo technique, however, we can determiag
%= wHu fori=M (37)  and hence),) numerically. We still assume all branches have
1 W1, .
) ) the same average gain [(32)], and furthermore, we assume
thus their means are given by all interfering signals have the same strength, i®;, =
_[o, fori1<i<M—1 38 P,1 <j <L The iptrinsic mean eigenvalues defined as
(o) = MP,, fori=M. (38) 4, = (ov;) /P, are obtained from 10000 sample Monte Carlo
averaging and are shown in Table | for several valueg{of
It follows from (36) and (38) that and L.
o2/ Py, forl<i<M-—1 The mean eigenvalues for ea¢h/, L) pair in the table
(i) = (MP, +0%)/P,, fori= M. (39) are arranged in ascending order and their sum is seen to be

equal to the total interference power incident upon the array,

Normally, thejth signal-to-noise ratio defined as which is M x L. Since®,, is an M x M matrix of rank L,

r. — by 0<i<L (40) we see that onlyL. eigenvalues and hence their means are
R =J= nonzero for each M, L) pair. It is straightforward to show

is known, so the mean eigenvalues can be expressed as that the zero eigenvalues give rise to an infinite output SINR
if there is no thermal noise, which explains why an branch

(A;) = { 1/, for 1 SisM-1 (41) adaptive antenna can null up to= M — 1 interferers. Hence,
(MLy +1)/To, fori= M. it can be expected that if the interference is the dominant
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P(y)

Fig. 2. The CDF of the output SINR of an adaptive antenna with four uncorrelated branches and several interferers.

source of undesired signals, the output SINR of the arrgimulations. At low-probability levels, the simulation results
will be significantly improved over the branch SINR. It istend to deviate randomly around the analytical curves due
also interesting to note that the nonzero eigenvalues of tfeethe limited number of samples used in the simulations.
M branch andL interferer case are the same as those in tigalytical and simulation results for other INR levels are also
L branch andM interferer case. This can be proven to behown in Fig. 2. Due to the normalization of the abscissa,
valid for any values ofM and L provided: 1) the branchesthe branch undesired signal power appears to be constant, so
are uncorrelated; 2) all branches have same average gain; @@dsee that as the interference power becomes a dominant

3) all interferers have same average power. part of the undesired signal power, the performance of the
It follows from (36) that array improves. FoF; = 0, i.e., there is no interference, the
() +0? aPi+o? ali+1 performance is the same as that of a maximal rgtiq combiner.
(M) = P = P =77 ) For LIy = 100, the performance of the array is improved
0 0 0 _ - . 0
1<i< M. 43) by 17 and 13 dB forL. = 1 and L = 2, respectively, at 1%

probability level. As the number of interferers increases, the

From Table I, (25), and (43), the CDF of the output SINRUM of the interfering signals becomes decorrelated between
can be determined for arbitrary levels of input INR and SNRranches and behaves more like noise. Therefore, it can be
An extended table for larger values bf and L can be worked expected that fol. — oo, the CDF curves should approach
out if one needs to evaluate the performance of larger arrajizose of the maximal ratio combiner.

As an example, we calculate the mean eigenvalues of a four4) Thermal Noise—Multiple Interferers—Correlated
branch array with several equal strength interferers and plot tBeanches: This is the most general case in the sense that
CDF for each case. Let the desired and total interfering sigrthkre can be any number of interferers incident upon an array
powers be 10 dB over the noise level, i.Eg, = LI’y = 10. with arbitrary correlations between the branches and arbitrary
The mean eigenvalues according to Table | and (43) are: average powers in each. Since the desired and interfering

1) M=4,L=1:(\)=(\)= () =0.1,(\,) =4.1; signals may have different propagation conditions and hence

2) M = 4L = 2. () = (X)) = 0.1,{\3) = their angular source distributions at the receiving site can all
1.005, (\y) = 3.195. be different, their covariance matricds;,0 < j < L are
Fig. 1 shows the CDF of versusy/I’, where most generally not the same. It is not uncommon, however,

that the propagation conditions for one signal are equally
- - (44) favorable to others, such as in a crowded indoor environment:
= = then it can be shown that their covariance matrices are either
Z Pj+a? Z Ij+1 the same or different just by proportionality constants.
=1 =1 The eigenvalued;, 1 < i < M, to be found are solutions to
is the mean branch SINR. The analytical curves are seenthe generalized eigenvalue problem (17), wheiis still given
agree closely with results from 10000 sample Monte Carly (33) and (42), buR; is no longer proportional to an identity

P r
r 0 0
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P(y)
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Fig. 3. The CDF of the output SINR of an adaptive antenna with two correlated branches and one interferer.

matrix as in (31). In order to fin¢l\;} a Monte Carlo technique be accurate at such high-probability levels, we conclude that
is again used, where the random vectars0 < j < L it is the analytical results that are inaccurate in this case,
are generated according to the covariance matriRegsee recalling that the CDF ofy is only based on a first-order
Appendix B). Unfortunately, there is no simple relationshippproximation of its characteristic function. The deviation
between the mean eigenvalués;) and {(«;) as in (43) so is, however, not very large and we are usually interested in
{\;) have to be determined by a Monte Carlo technique femall probability levels, which are analytically accurate. The
particular values of INR’s. difference in the output SINR'’s of cases 1) and 2) is the
As an example, we calculate the mean eigenvalues fop@rformance degradation due to branch correlation. At the 1%
two branch array with one interferer. In order to investigaterobability level, the degradation is seen to be 6 dB. Similarly,
the effects of unequal branch gains and branch correlatidifgm case 3), the degradation due to unequal branch gains
we let the desired and interfering signals have the followiri§ 4.5 dB, whereas a degradation of approximately 10 dB is
covariance matrices: seen in case 4) as a result of the combined effects of branch
correlation and unequal branch gains.

1 ap
Ry=R, = [ap a2:| (45) D. Convergence of Analytical and Numerical CDF'’s

Even though the derived analytical CDF is based on a

where p is the branch correlation and?® is the gain ratio first-order approximation of(G(z, A1, -- -, An)), which is

between the second and the first branches. Furthermore,gl'é/Fn.by (19)’ the resylts are accurate in all but one case
. : : : nvestigated in the previous section. The reason why this first-
the desired and interfering signal powers be 20 dB over the o : .
. . . order approximation works is becausg is a well-behaved
noise level, i.e.I'y = I'y = 100; then we have:

) 2 _ smooth function of\; as is evident from (16), and, therefore,

1) p° =0,a" = 1: (A1) = 0.01, (Ag) = 2.01; the high-order terms of the approximation can be expected to

2) p? =0.9,a% = 1: (\1) = 0.09, (\2) = 2.11; be very small.

3) p? =0,a% = 0.1: (A1) = 0.05, (Az) = 2.05; In Section C, good agreement between analytical and nu-
4) p* =09,0® = 0.1: (A1) = 040, (\2) = 2.70. merical results by Monte Carlo simulations has been observed
Fig. 3 shows the CDF of versusy/T for the above cases. for probability levels as small as 16. By increasing the

The analytical results for the first three cases are seenni@mber of samples in the simulations, the results can be shown

agree closely with results from 10000 sample Monte Carto agree at even smaller probability levels. Consider again

simulations except at low-probability levels where the simuhe four-branch array and several equal strength interferers
lation results are not very accurate due the limited numberwfth LI'; = 100. Fig. 4 shows the numerical results of
samples. For the last case, however, there are small deviati®@8 000 and 1000000 sample simulations, which evidently
between analytical and simulation results for probabilitiesonverge toward the analytical CDF for all probability levels
larger than 0.1. Since simulation results can be expecteddmwn to 10°¢. Similarly, for the case of the two-branch array
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---100,000
" sample sim.

P(y)

1,000,000
. sample sim.

v/T [dB]

Fig. 4. Same as in Fig. 3 witiI'y = 100 and the number of samples in the simulations increased to 100000 and 1000 000.

P(Y)

ETheo.

...100,000
sample sim.

1,000,000
sample sim.

v/T [dB]

Fig. 5. Same as in Fig. 3 with®> = 1, p> = 0.9, and the number of samples in the simulations increased to 100000 and 1 000 000.

having correlation coefficiert?> = 0.9 and one interferer with CDF expressed in terms of the mean eigenvalues still offers a
I'y = 100, Fig. 5 shows the convergence of the numericaignificant advantage over full Monte Carlo simulation because
results as the number of samples increases from 100 000d&termining the mean eigenvalues requires fewer samples by
1000 000. far than finding the numerical CDF directly. Once the mean
As discussed under point 4) in Section C, the mean eigegigenvalues have been found, the distribution is fully known,
values must be determined by a Monte Carlo technique fioe., the probability at any output level can be found.
the case of correlated branches. While one may think thatConsider for example an array having five correlated
this defeats the purpose of deriving the analytical CDF, thanches and three equal strength interferers with = 100.
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Fig. 6. The analytical CDF’s of the output SINR of an adaptive antenna with five correlated branches and three interferers. The CDF's are based on mean
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eigenvalues calculated by Monte Carlo technique with different numbers of samples.

TABLE 1

MEAN EIGENVALUES OF AN ADAPTIVE ANTENNA
WITH FIVE CORRELATED BRANCHES AND THREE
INTERFERERS CALCULATED WITH DIFFERENT SAMPLE SIZES

10 samples | 100 sample salr’r(l)l())l(;s sla(r)x’l(;))(l)gs
A 113x 1072 [ 132x 1072 | 1.39x 107 | 1.39x 102
R 3.16x 1072 | 333x1072 | 339%x107™ | 3.34x 107>
(g 436% 107 {413x107 | 472x107 [ 4.63x 107
) 131 132 141 141
() 333 3.13 323 3.19

Fig. 7 with the converged analytical CDF. Only the CDF with
1000000 samples is seen to match closely with the analytical
CDF at all probablity levels shown. The central processing
unit (CPU) time for the 1000 000 sample simulation is 19 350
s, which is approximately 1000 times longer than that of 1000
sample calculation of the mean eigenvalues. If the numerical
CDF is to be determined at probability levels lower than4,0
even more samples will be needed. Because of limitations in
computer memory and CPU time, the Monte Carlo approach
becomes impossible below a certain probability level, leaving
the analytical CDF as the only known method to determine

the SINR performance of an adaptive antenna with correlated
branches at extremely low-probability levels.

Assume that the desired and interfering signals have the

following covariance matrix: E. BER Performance for Optimum Combining

1 06 03 03 06 In digital mobile communications, the average BER for

06 1 06 03 03 coherent detection of phase-shift keying (PSK) signals is given
Ry=R =|03 06 1 06 03 (46) by

03 03 06 1 06 oo

06 03 03 06 1 BER=} /0 p(7) erfe(\/y) dy (47)

The mean eigenvalues calculated by the Monte Carlo tech-

nique with different numbers of samples are listed in Table Mvherep() is the PDF of the output SINR.

which shows small differences between calculations, espeSubstituting (24) into (47), we have the BER performance
cially for those cases with the highest numbers of samples. Ta@ optimum combining with multiple interferers and corre-
analytical CDF’s based on these sets of mean eigenvalues|ated fadings

shown in Fig. 6. It is evident that the CDF’s converge quickly w /N

as the number of samples increases. For 1000 and 10000 BER:E / <Z B; exp(—(\i)v)

samples, the CDF’s are almost indistinguishable. It is worth 2 Jo im1

noting that even when the number of samples is as small as ten, M—N i1

the approximate CDF is less than 0.5 dB from the converged + Z C; 77' exp(—()\/\4>’y)>
CDF at all probability levels. For comparison, numerical i=1 (e -1t

-erfe(\/) dy.

CDF's obtained from Monte Carlo simulations are shown in (48)
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Fig. 7. The CDF of the output SINR of an adaptive antenna with five correlated branches and three interferers.

In order to evaluate (48), we need the following general The BER versus mean branch SINR of adaptive antennas

integral formula [15]: with several uncorrelated branches and two equal strength
interferers is shown in Fig. 8. Note that the mean eigenvalues
1 o ; .
KT / 251 exp(—az) erfc(\/ﬂ) du in (50) or (51) can be expressed in termslafandIl” as
- 0

K k1 a;l] +1
Vita/b—1 K—1+k =t T
<27 Vi+aft ) 2 < k ) IR 7

k
) <\/1 +a/b+ 1) (49) which follows directly from (43) and (44). These analytical
1+a/b results agree closely with results from 100 000 sample Monte
Carlo simulations by Winters [3].
where (K—l-{—k) — (K — 1+ K)/E/(K — 1)!) are binomial _Similarly, for the case of arbitrary blranch correlations and
coefﬁcientg ands > 0. gains, one can determme the mean eigenvalyes (17) for
From (48) and (49), we get I'o =I'y. The mean eigenvalues for any valueslgfare

/1 b; I’y b;I;
PR Z (%) Wi =T, = <§L: ) 3)
I Fj—i-l

14 (\
i=1 +< i) assuming that all’; are kept unchanged.
1

i k
<—1+k>< 1+<Ai>—1> 50)
— k 2/1+ ()
[ll. CONCLUSIONS

whereB; andC; are given by (22) and (23), respectively. For | this paper, an approximate analytical CDF of the output
the simple case of all distinct mean eigenvalgeés = M), SINR of an adaptive antenna with correlated branches and
we have multiple interferers in flat Rayleigh fading environments has
) been derived. Even though the distribution is based on an

k=0

BER — Z < + () =1 (51) approximation to the characteristic function of the output
1+ ) SINR, it is accurate in all but one case investigated, namely, at
high-probability levels when there are high branch correlations
where B; is given by (27). and large differences between branch powers.
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Fig. 8. The BER versus the mean branch SINR for adaptive antennas with several uncorrelated branches and two equal-strength interferers.

In the case of uncorrelated branches, the intrinsic meamity effects of nearby disturbing objects often make the as-
eigenvalues for systems with several branches and equalmption of independent and equal-gain branches invalid [7].
strength interferers have been tabulated. With this table, the
mean eigenvalues for systems with arbitrary SNR and INR APPENDIX A
can be determined. Thus, the distribution offers a quick andLet
accurate way to evaluate the performance of an adaptive an-
tenna in multipath environments, especially at low-probability T =, + ju;, A=A, +jA; (A-1)
levels where results by Monte Carlo simulations are either
unreliable or impractical because of limitations in computevherew,. andw; are two real vectors of dimensial/ x 1

time or memory. and A, and A; two real matrices of dimensiod/ x M.
In the case of correlated branches, the mean eigenvalfresthermore, assumd to be Hermitian. Define

have to be determined numerically for particular values of “. A, —A,

INR’s by a Monte Carlo technique. Nevertheless, the CDF y= [uﬂv B= [AT ATZ}- (A-2)

expressed in terms of these mean eigenvalues still offers sig-

nificant advantages over full Monte Carlo simulations becauselt can be shown readily that'! Az = y* By which is a real

determining the mean eigenvalues requires fewer samplesdaylar, and hence

far than finding the CDF directly. Furthermore, once the mean 0o

eigenvalues have been found, the distribution is fully known, / exp(—z" Az) dx = / exp(—y’ By) dy. (A-3)

i.e., the probability at any output level can be determined /- oo

accurately. The right-hand side of (A-3) can be evaluated exactly [16,
As a result, a closed-form expression of BER for coherept 118] as

PSK has been derived based on the above approximation. With

the CDF available in terms of elementary functions, closed- exp(—y" By) dy = /

oo

1
exp {—5 yT(ZB)y} dy

form expressions of BER for many other digital modulations /oo —oc0
can be derived. _ (2m)2M/2 Ad
The CDF thus found should provide a powerful analyti- T 2B|V? (A-4)

cal tool for evaluation of adaptive antenna performance in

multipath environments. With multiple interferers taken int&nce [10, p. 557]

account, the result is expected to be valuable in designing 12B| = 22M|B| = 22M|A|? (A-5)
multiple-user radio systems where optimum combining is

implemented to enhance interference tolerance and increagehave from (A-3) to (A-5)

capacity [4]. With branch correlation and unequal branch gains o o

considered, we can realistically estimate the performance of / exp(—z" Az) dz = T (A-6)
compact adaptive antennas, where design constraints and prox- —o0 | Al
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APPENDIX B [15] P. Bello and B. D. Nelin, “Predetection diversity combining with
. . . .. . selectively fading channels|RE Trans. Commun. Systvol. CS-10,
Monte Carlo simulations of optimum combining with corre- 32 mar. 1962.
lated branches require in general the generation of a zero-mdh H. CramerMathematical Methods of StatisticsPrinceton, NJ: Prince-

: : : : ton Univ. Press, 1946.
complex Gaussian random vecipwith covariance matriA. [17] A. Leon-GarciaProbability and Random Processes for Electrical Engi-

This can be done by first generating a veatpwhose elements neering 2nd ed. Reading, MA: Addison-Wesley, 1993.
are zero-mean unit-variance uncorrelated complex Gaussian

random variables. The random vecipcan then be generated

from z [17, p. 251] by

Y= PD'?g (B-1) Tien D. Pham (S'93-M'97) received the B.A.Sc.

: degree from the Engineering Academy of Den-
mark, Lyngby, Denmark, in 1988 and the M.A.Sc.
and Ph.D. degrees from the University of Toronto,
Toronto, Ont., Canada, in 1990 and 1998, respec-
tively, all in electrical engineering.

From 1990 to 1992, he worked in the electronics

whereP is a matrix whose columns consist of an orthonormi
set of eigenvectors oft and D'?is a diagonal matrix that
consists of the square roots of the eigenvaluesAofSince
a covariance matrix is always Hermitian and nonnegati\ . N e e

. : H industry as a Hardware Engineer. In , newas a
definite [11, p. 190], its eigenvalues are always real ai Consuitant for Spar Aerospace Limited, Brampton,

. . 2 . -
nonnegative, and the existence of a el ? is guaranteed. Canada, studying the implementation of adaptive

antennas as a means to improve the quality of
signals received in severe radio environments. Since 1997, he has been with
ACKNOWLEDGMENT the Wireless Research and Development Group, Mentor Graphics Corporation,

; ot Jose, CA. His current research interests include adaptive antennas and
Th_e aUthO_rS EXpre_Ss their appreciation for the strong SquﬁTgrowave circuits for wireless communications. P
and interaction provided by Bell Canada and Bell-Northern
Research (now Nortel Technology).
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