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].e., 

g+4k = Ej, j = 1, 2,  . . . 5 ,  
.\' 

(5)  
k=l  

where 

gjt= (+it (6)  
and 

Ei = (+<, E). (7) 

One  refers to  the coefficient matrix  in ( 5 )  as 
the  Gram  matrix  formed from vectors 
41, h, . . * , +X. One  denotes  this  matrix by 

N + 1 ,  9 2 ,  * . . , +x) = {gik] (8) 

where gjk, the element  in row j and column 
k of G, is  defined  in (6).  Furthermore,  the 
minimum  value of Az in ( 3 ) ,  Le., the  value 
of A2 obtained  when  the A k  from ( 5 )  are  sub- 
stituted  into ( 3 ) ,  is  given (see, for example, 
Achieser [SI) by the following ratio of deter- 
minants: 

Since the  parameters A,t do  not occur in (9) 
one can now remove the restriction that  the 
nonlinear parameters  are  known  and select 
these  parameters, for  example by  the  method 
of steepest descent [ 6 ] ,  soas  tominimize  the 
ratio of the  determinants i n  (9). In view of 
(3) this  minimum  ratio  is  then  the smallest 
least  square  error achievable  in approximat- 
ing 

n. 
E(x)  by A d k .  

In  order to achieve this minimum, the A k  

are selected as  the solution of the  linear 
equations (5). 

If the  experimental  data  varies in  relia- 
bility  one  can  take  this  into  account  by  in- 
troducing weights wi>O, i.e., by replacing 

l i p 1  

(1) by 

u, 9) = I p i ) p Q ) W i .  (10) 
x 

Furthermore, if the  experimental  data is 
taken a t  all  values of the  independent  vari- 
able x in  an  interval a>r>_b, then  the  ap- 
propriate definition of the inner  produc- 
tion  is 

(.f, g) = ' f * ( x ) g ( x ) w ( z )  dz (11) 

where w(x)> 0 is a weight  function which 
accounts for the  varying  reliability of the 
data.  Equations (2)-(9) are  then also  valid 
in terms of the more  general  definition  of the 
inner  production in (10) or (11). 

Of course, in special  cases the procedure 
can be  simplified. For example,  consider the 
approximation of E ( x )  by Ae-m=ey'flz where 
the nonlinear parameters a and 6 are real. 
This  can b: rephrased as  the  approximation 
of log E ( x )  by log A -(y1:-jBx. One is then 
led to two independent  approximation prob- 
lems in  each of which the  parameters occur 
linearly.  Hence in each of these problems the 
classical  method of least squares embodied in 
( 5 )  can  be employed. The first  problem  is to 

approximate log I El by log I A 1 - a x .  This 
determines log I A I and a from the measured 
values of I E I via ( 5 ) .  ?vIore precisely,  since 

Then log I A 1 and a are  determined  from ( 5 )  
which here become 

The second problem  is to  approximate 
arg E ( x )  by  arg A -ox .  This  determines 
arg A and B from the measured  values of 
arg E ( s )  via ( 5 )  in a  manner analogous to 
(12) and (13). Unfortunately.  a  separate 
analysis of the  data on amplitude IE(x) I 
and phase arg E ( x )  is not  in general  possible 
when  more than one  mode is present. One is 
then forced to employ the  analysis discussed 
above in  connection  with (9). When I E ( x )  I 
alone is measured then  an analysis of the 
data  in a least square sense as in the  above 
manner for the multimode  case  does not 
appear feasible. 
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Impedance of a Spherical Probe 
in a Magnetoplasma 

In  a  recent  paper, Balmain [l ] used 
quasi-static  theory  to  compute  the imped- 
ance of a  short dipole  in a magnetoplasma 
and also  discussed the use of a scaling  pro- 
cedure which transforms  the free  space equa- 
tions  into magnetoplasma equations. I t  will 
be shown here how such a scaling  procedure 
can  be used to  derive  an  approximate, 
closed-form  expression  for the  impedance of 
a small, spherical  probe  immersed  in a cold 
magnetoplasma. 

The basic  impedance formula  may  be  set 
up using some results from elementary elec- 
trostatics. The energy  necessary to assemble 
a  charge Q on a conducting body with  capa- 
citance C is 

If the  charge  has  density p and if the conduc- 
tor  potential is V,  the energy is also  given by 

Thus  the  input  impedance of the  conducting 
body for slowly varying sinusoidal fields may 
be  expressed as 

For  a spherical probe,  the  charge p is spread 
in a  thin layer over  the surface of the sphere. 
If the probe  is small,  the  potential  Vmay be 
approximated  by  the  potential of a point 
charge of Q coulombs  located at   the center 
of the sphere. 

The  potential of a  point  charge in a mag- 
netoplasma may be obtained  by scaling. If 
primes are used to  indicate  free space co- 
ordinates  an  appropriate scaling is given by 

The  quantities R' and Ro are  the diagonal 
elements of the  permittivity  tensor  and  are 
given  by 

in which 
x = W&rz/02, Y = W E / W ,  

U = 1 - j Z  = 1 - j v / w .  

The  quantities WAF, w z ,  and v are, respec- 
tively, the electron  plasma, cyclotron,  and 
collision  frequencies.  Scaling of the free 
space point  charge  potential  may  be carried 
out  as follows: 

T.'=-- Q -  Q 
4acor' 4 m o d x ' *  + y'? + 2'2 
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The following definitions, 

x = rsin8cos9, y = rsinOsin9, 

8 = r cos 8, I n 2  = 1 - - > 
KO 
K‘ 

make  it possible to express (6) as 

Q V =  
4reorK‘dl - m2 sin2 8 

(7) 

which is  the required  potential of a point 
charge in a magnetoplasma. 

In  order to calculate  the  impedance,  the 
charge  density p must  be  determined.  The 
total  charge of Q coulombs  is  spread  in a 
thin  layer  over  the  surface of the  sphere 
which has  radius R. If the  actual  charge d i s  
tribution is approximated  by a uniform dis- 
tribution,  then  the  charge  density  may  be 
expressed as 

p - 6 ( ~  - R) Q 
4rR2 

in which 6 is the  Dirac  delta.  Substitution of 
(7) and (8) into (3) permits  the volume  inte- 
gration  to  be  carried  out,  giving 

Thus  the impedance  formula  reduces to 

in which 

In  the  above expression, the logarithm  must 
be  calculated using the formula 

~n w = 1n I w I + i arg w 

in which 

-r < arg M < X .  

The influence of an ion sheath  may  be 
estimated  by  representing  it as a free space 
gap of thickness S separating  the  probe  from 
the uniform  plasma. Thus if the  probe  radius 
is R, the  radius of the  sheath  edge is R+S. 
Under  these  conditions  the  probe  impedance 
consists of the  sheath  impedance  in series 
with  the  plasma  impedance,  the  latter being 
approximated  by (9) with R replaced by 
R+S. If the  quantity  Tis defined as 

then  the  probe  impedance  with an ion sheath 
present is given  by 

1 1  1 

JW4XW R + S  

+. 

zi, = - (F - -) 
T 

~w&co(R + S) 
1 S f R T  

j&eoR R + S  
=__.-. (10) 

Under lossless conditions (Z-tO) the 
above  formula  has a positive  real part when 
Ko/K‘ is  negative.  This  anomalous resis- 
tance  has been noticed  by  Kaiser [2 ]  and 
Balmain [ l]  in  their  studies of dipole im- 
pedance and  it arises  whenever the  quasi- 
static differential equation is hyperbolic. 
The impedance is entirely  reactive  when  the 
differential equation is elliptic, that is,  when 
KoIK’ is positive. Under  hyperbolic condi- 
tions  the  anomalous  resistance  arises  from 
the  imaginary  part of the logarithm whose 
sign must  be  determined by evaluating  the 
logarithm for a small  value of 2 and  then 
taking  the  limit as Z-0. 

Another  probe effect of interest is the 
“resonance  rectification” effect in which an 
R F  probe  exhibits a direct  current  peak at a 
frequency which for  isotropic  plasmas is 
below the  plasma  frequency. I t  is believed 
that  the peak  in  direct  current occurs near 
the minimum in R F  impedance.  This mini- 
mum  may  be  regarded as a “series reso- 
nance’’ due  to  the series connection of a ca- 
pacitive  sheath region and  an inductive 
plasma region (refer to Crawford [3] and 
Dote  and  Ichimiya [4] for  further discus- 
sion).  Inspection of (10) indicates that, un- 
der lossless conditions, a series resonance 
(zero in  impedance)  can  occur if T is nega- 
tive. The  factor T i s  dominated  by K‘ which 
is  negative  in  the  frequency  range 

WH < w < d W H 2  + o2. (11) 

Thus rectified current  peaks are to  be ex- 
pected  mainly  within  this  frequency  range. 

I t  must  be  emphasized  that  the  spherical 
probe model assumed  is  highly idealized. In 
practice the fields aould  be  distorted  by  the 
presence of the connecting wires and  the 
nearby reference electrode. In  addition,  the 
sheath-plasma  interface would not  be  spher- 
ical but would be  distorted  by  the  magnetic 
field. Another  important  factor is the size of 
the  probe;  its  radius would have  to  be much 
larger than a Debye  length to avoid effects 
arising  from  the nonzero temperature of the 
plasma [SI. 
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On the Variability of Microwave 
Transmission  Time  over 
Tropospheric Paths 

A preliminary study of the  variability of 
transmission  time  for  microwaves  propa- 
gated  over fixed tropospheric  paths at White 
Sands Missile Range  (WSMR), Xew  Mex- 
ico, was  recently  completed.  This  investiga- 
tion  marks  the first  serious attempt at 
WSMR to examine the detailed  structure of 
tropospherically  induced  variations  in  radio- 
distance  measurements  over long paths at  
low elevation angles. A knowledge of the  sta- 
tistics of these  variations  is  important  in 
examining  refraction  errors  in data from 
phase  measuring  tracking  systems,  in devel- 
oping  methods  for  the  minimization of these 
errors, and in  examining the  uncertainties  in 
phase references (used in  bistatic  tracking 
systems)  resulting  from  their  transmission 
over  tropospheric links. 

Under  this  study,  observations of radio 
range  variations were made with the Electro- 
tape Model DM-20,’ a surveying  instrument 
built  by  the  Cubic  Corporation, modified to 
permit  the  continuous  recording of the 
phase of the 7.492427 Mc/s  ranging  fre- 
quency  used  to  frequency  modulate  one of 
the nine selectable  X-band  carriers. A pair 
of the  instruments were operated  sequen- 
tially  over  three  paths of lengths 38.45 km, 
50.54 km,  and 57.03 km, having a common 
lower terminus  and  elevation  angles of 2.4, 
31.7, and 28.2 milliradians,  respectively. 
Data were recorded during  the  spring 
months of 1964 for periods ranging  from  one 
to five hours. 

The analysis of the  data was  carried out 
by  the  Central  Radio  Propagation  Labora- 
tory  (CRPL) of the  National  Bureau of 
Standards  (NBS),  Boulder, Colo., following 
the procedure  outlined below. Recent 
changes,  not  described  here, have  been 
made  to  this  procedure  and  include pre- 
whitening of the  data  and  an improved 
method  for  obtaining  smoothed  estimates of 
the power spectral  density  function.2 n 
equally  spaced  readings are  made of a con- 
tinuous  recording of the phase  variations 
(from an  arbitrary zero reference) of the 
ranging signal over the two-way path,  and 
are used to  compute  the  autocovariance 
function  according to 

. [AR(ti) - a R ]  
where T = K 6 ( k = O ,  1, . . , nz), 6=sampling 
interval (in seconds), nztnumber of time 
displacements  (or  lags), 
and 

- 1 . ‘ I  

It i d  
AR = - AR(ti). 

The power spectral  densit>-  function is then 
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