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for the same example described in the previous paragraph, an
additignal threefold reduction in CPU time was achieved.

IV. CONCLUSION

The|Iskander-Tumeh method of analysis has been demonstrated
to yield accurate results with a much less CPU time. Use of the
translational symmetry property to further improve its computational
efﬁcieltcy are also demonstated. Additional saving in CPU time
is possible if the near-field nature of the problem is taken into
account. Numerical experience suggest that Az’ = 1 mm, Az > 1
mm, and a 1% field convergence rate should produce accurate SAR
with adequate spatial resolution. Since only the symmetry property
associated with Fr and Fy terms are exploited, this algorithm is also
applicable to nonuniformly insulated IDA’s, for which one needs only
replace (1) with appropriate section-dependent current distributions
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A Fast Integral Equation Technique for Shielded
Planar Circuits Defined on Nonuniform Meshes

George V. Eleftheriades, Juan R. Mosig, and Marco Guglielmi

Abstract— In this contribution, the groundwork is laid out for the
realization of efficient integral-equation/moment-method techniques, with
arbitrary types of basis functions, for the computer-aided design (CAD)
of geometrically complex packaged microwave and millimeter-wave in-
tegrated circuits (MMIC’s). The proposed methodology is based on an
accelerated evaluation of the Green’s functions in a shielded rectangular
cavity. Since the acceleration procedure is introduced at the Green’s
function level, it becomes possible to construct efficient shielded moment
method techniques with arbitrary types of basis-functions. As an example,
a Method of Moments (MoM) is implemented based on the mixed poten-
tial integral equation formulation with a rectangular, but nonuniform
and nonfixed, mesh. The entire procedure can be extended to multilayer
substrates.

1. INTRODUCTION

In the framework of the Method of Moments (MoM) for shielded
circuits, a major component of the CPU time is attributed to filling the
MoM matrix due to the large number of summation terms involved
[1]-[6]. To date, the most successful techriique for addressing this
filling problem is by using the fast Fourier transform (FFT) [2]-[4].
Unfortunately, the FFT restricts the underlying discretization to a
fixed rectangular mesh with the corresponding subsection size limited
to an integral multiple of the basic cell size. For these reasons, the
FFT imposes restrictions to the accurate description of the geometries

to be analyzed. In addition, the basic cells size, and thus the order

of the FFT, are determined by the finest geometrical feature in the
circuit and this cannot always be the most efficient choice. ‘

Herein, the groundwork is laid out for the realization of efficient
moment methods in a shielded environment with arbitrary types of
basis functions. This becomes possible due to the introduction of
a fast scheme for evaluating the Green’s functions in a rectangular
cavity. The technique begins by extracting the asymptotic part from
the usual two-dimensional (2-D) modal summation form of the
box Green’s function [4], [5]. The asymptotic part depends on the
frequency in a trivial manner and thus is expressed in terms of
frequency-independent summations. Subsequently, these frequency-
independent summations are transformed into a form that involves
the exponentially decaying Bessel functions of the second kind. This
enables to effectively collapse the original frequency-independent 2-
D sinusoidal series into one-dimensional (1-D) ones. Because the
acceleration process is applied at the Green’s function level, the
door opens to the realization of efficient MoM-based techniques with
arbitrary types of basis functions.

As an example, a particular moment method has been implemented
based on the mixed potential integral equation (MPIE) formulation
and a nonuniform/nonfixed rectangular mesh [5], [8]. At the MoM
level, special care is taken so that the interaction integrals involving
the modified Bessel functions are carried out in an optimum way.
Recently, an independent attempt was made in [6] to also accelerate
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the evaluation of the asymptotic. MoM matrix elements. In that
effort, however, acceleration techniques have been applied directly
to the elements of a particular MoM implementation. Therefore, the
corresponding results cannot be generalized to arbitrary types of basis
functions.

II.  SUMMARY OF THE FORMULATION

The general form of the structures considered in this article
consist of passive microstrip circuits printed ot an isotropic dielectric
substrate (€3, 1) of thickness, ¢, enclosed in a rectangular shielding
cavity of dimensions a x & x ¢. The corresponding vector and scalar
potential Green’s functions for Z-directed currents are given by the

expressions
o = 55 3 et (02 o (222
-sin (F52) sin (m;y> W
Gy = ;;: 2 a;;;; Ve (w) — ViM(w)] sin (m;rgc')

- $in (%) sin (%) sin (%) 2)

where the coefficients Ve (w), Vil (w) are voltages on equivalent
transmission lines corresponding to each TE, /T'M, waveguide mode
and describing the longitudinal z-variation of the fields [9]. Also,
Kmn = /(mn/a)? + (n7/b)? is the transverse wavenumber and
eom = 1 if m = 0, otherwise e, = 2. In order to accelerate
the computation of the double summations in (1) and (2), we
introduce the frequency-independent components of the potential
Green’s function GAZ”’TELA?EF/E,CAJXT/M [see (4)-(8), below]. These
components can be obtained from the original expressions (1) and
(2) by computing the asymptotic values of the voltage coefficients
ng(w),vgg/[ (w) as-the indexes m,n tend to infinity. Now, the
frequency-independent components can be added and subtracted to
(1) and (2) and the final result is shown in (3)

sz — GZJ‘:D + Gzz,TE,
Gy =Gvp — szM\I;'E + é"I}M (©)

The entire process of extracting the asymptotic components of
the original series (1) and (2) to obtain the rapidly convergent
“residual” series G2 and Gvp can be identified with the well-
known Kummer’s method of series acceleration [10]. What remains
to be done for completing the effort of accelerating the original
Green’s functions is to also enhance the convergence of the remainder
frequency-independent components fo’TE, leliiNet

mre (mvrcc>
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In 4)-(6) e = 1/e1 + l/€2,1/,uf = 1/}1«1 + 1/p2 with
(€1, 1), (€2, p2) being the permittivity and; permeability of the two
layers adjacent to the current-carrying interface z = (. Using Pois-
son’s summation formula together with Sommerfeld’s 1dent1ty [11]
enables to convert the transverse smusmdal summations Sm ,5(2)
into a fast converging series involving the exponentially decaying
modified Bessel functions Ko and K (see Appendlx)

S = % i {Ko (T(y —y'+ 2@))

— Ko (" (y+y' +201))} | ©

5(2) _ 2ab

_i (= + 200 (P (g — o/ 4 200))

— (y+y' +2n00) Ky ( (y+y +2mb))}

Due to the presence of the fast-decaying modified Bessel functjons,
only two or three terms are required in (9):and (10) for computing
Sﬁé), 5. Thus, the original 2-D frequency-independent summations
(4)-(6) are effectively transformed into 1-D opes, leading to -a
dramatic reduction of the associated computational effort. Also,
it is important to recognize that since the frequency-independent
accelerated expressions (9) and (10) are at the Green’s function level,
it is implied that anmy arbitrary discretizaticf)n scheme can be used
for the subsequent implementation of the MoM. The entire proce-
dure can be extended to multilayer substrates in-a.straightforward
way. .

10

{II. MOMENT METHOD WITH A NONUNIFORM MESH

Based on the Green’s function evaluation“of the previous section,
the MPIE formulation has been applied in a:Galerkin’s scheme with
a nonuniform/nonfixed rectangular mesh based on the rooftop basis
functions shown in Fig.'1. This already offers improved flexibil-
ity over the fixed mesh required by the FFT schemes. It should
be made clear,however that the technique idescribed in Section II
enables MoM implementations with any arbitrary kinds' of basis
functions (such as triangular) for even further geometrical flexibility.
Each time, the challenge would be to manage to- translate the
Green’s function speed-up benefits to the pamcular MoM implemen-
tation. ;

In view of the Green’s function decomposition described by (3),
the associated MoM impedance matrix can! also be decomposed in
a similar fashion

[ZTM 2ZTE}

Zvom = Zp(w) + ™ (11

The frequency-dependent component of the MoM impedance ma-
trix Zp(w) needs only a few summation jterms to converge due
to Kummer’s transformation. On the other hand, ‘the frequency-
independent components Z ;TE ,Z ;TM require ithe evaluation of double
integrals of the modified Bessel functions against piecewise constant
pulse basis functions. In this case we have! managed to reduce all
frequency-independent interactions in. terms of the single definite
integral of the modified Bessel function of zero order, K; (), given
in (12) : :
Ki(z) = / Ko(u) d@. (12)

0

The integral (12) is pre-computed numerically, then piecewisely

interpolated by polynomials that are stored so :that it can be rapidly
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zbl =|0.3409a,2br = 0.4091a and Ayb = 0.01136b. The box size
isa =9 =67.5 mm, ¢c = 11.4 mm and the substrate thickness is ¢ = 1.57
mm with £, = 2.33.

retrieved during the frequency-independent MoM computations. To
demonstrate the efficiency of the proposed procedure, we show
in Fig. 2 the convergence. diagrams for the elements of gz« TB
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Fig. 3.
er = 9.9 substrate.

A bandpass coupled-line -microstrip filter on

a high-dielectric

situation [5]. From Fig. 2., it becomes evident the accelerated

TM  sssociated to the self-interaction. of a rooftop .in a-

formulation reduces the required number of summation terms by two
to three orders of magnitude. \

IV. COMPUTATIONAL AND EXPERIMENTAL RESULTS

Consider the coupled-line bandpass filter of Fig. 3, which has quite
tight dimensions and is printed on a high-dielectric-constant ¢, = 9.9
substrate. The corresponding simulated return and insertion losses are
compared with measurements in Fig. 4. The computations of Fig. 4
have bgen performed using either one or three transverse cells for each
resonator. The frequency-dependent computations are carried out with
modes| up to TEgg 0/TMgo,60- On the other hand, modes up to
TE400)a00 /TMa400,400 are retained for the frequency-independent cal-
culatigns. The corresponding CPU times on a HP900/735 workstation
are 1 h (2 min.) for the initial frequency-independent computations
followed by 3.5 min." (11 s) for each frequency calculation when
using three transverse cells (one cell) in the microstrip lines. It is
important to point out that if the customary technique of ‘carrying
out the 2-D summations with the aid of FFT’s had been engaged
instead, the underlying fixed lattice would have been dictated by the
smallest dimension s; = s5, which is the spacing between the input
and ontput coupled lines.

0 g , —
'Y Q' ]

. 4
~ 10} S21 S11 ]
g | \ i \

" A
= H u o
2 20} 3 fV .
1] L ,
5 "." . ‘.‘ ¢
- : M
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40 R T P T
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Fig. 4. . The measured and computed S-parameters of the coupled-line filter.

V. CONCLUSION

In this contribution, the groundwork is laid out for the realization of
efficient integral-equation/moment-method techniques with arbitrary
types of basis functions in a shielded environment. As an example, a
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MoM is implemented based on the mixed potential integral equation
formulation with a rectangular, but nonuniform and nonfixed, mesh.
The entire formulation can be extended to multilayer substrates in a
straightforward way.

APPENDIX
The key equation used is Sommerfeld’s identity [11], which
expresses a spherical wave in terms of cylindrical ones. This identity
is quoted below, although slightly modified to serve our purposes

eIk B 1 /oo HC()Z)(Ap)e'*jzx/Kz—kz

e

== z>0 (Al
7 2] /oo

where the path of integration is along the real-axis but passes above
the branch-points at A = XK so that the radiation condition be
satisfied. By taking the static limit in (A1), K — 0, and using the
substitution A — jA, (i.e. transforming the path of integration from
the real~ to the imaginary axis), the following Fourier-pair relations
are readily established:

T[T _a ' 1

= “Ko(Ap)dA = — A2

o ), ¢ MR mTs W
L Y < Op)dr = —FE | A3)
o - e MEL(Ap)]dX = 53/2/2 +p2. (

The - Fourier pairs (A2) and (A3) are then used together with
Poisson’s summation formula to convert summations (7) and (8) into
their accelerated representations of (9) and (10), respectively.
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Analysis of Electromagnetic Boundafy—Value Problems in
Inhomogenous Media with the Method of Lines

Arnd Kornatz and Reinholﬁ Pregla

Abstract—In this paper we will' show how the method of lines can be
generalized for the analysis of inhomogenous media. The inhomogeneity
is completely arbitrary; the permittivity of the investigated structures
may vary in all three coordinate directions. Subjects under investigation
are isolated dielectric resonators, mictrostrip {filters with dielectric and
metallie lossy resonators, and planar capacities.

I. INTRODUCTION :

In arbitrary inhomogenous media, electromagnetic fields can only
be calculated with numerical methods. Possible methods are mode-
matching methods [1]; finite element methods [2], or finite difference
methods [3]. As long as the medium is structiured in some way, the
numerical analysis is partly substitutable by analytical calculations.
A method that is based on this principle isithe method of lines [4].
If the structure is invariant in one coordinate direction, the fields ¢an
be calculated analytically in this direction.iIn.the other directions,
the calculation is furthermore discrete. In comparison to the above-
mentioned methods [1]-[3] this procedure I}eeds less computational
resources. Under the use of Cartesian coordinates, the method of
lines can be employed to analyze all structures that consist of layers
in which the material does not change in mormal direction. Every
structure can be separated in such layers so that the method of lines is
an universal tool for the analysis of arbitrary%microwave components.
Simple examples for layered structures are microwave filters with
dielectric or metallic resonators, planar capacitors, optical modulators,
or couplers. In spite of the differences between these structures (e.g.,
used materials, boundary conditions, and ranges of application), they
can be analyzed with the same theory. ' '

II. THEORY

A. Electrodynamic Applications :

"For the analysis of inhomogenous 1aye'ré it is assumed that the
permittivity e, varies in = and y-direction] but not in z-direction.
In this case the electromagnetic field can be derived from a vector
potential A. Tt is important that the potential has the same vector
components as the gradient of the permittivity

A=A, o+ 4, e W

Only this general solution leads to a consistent system of coupled
differential equations for the potential components A, and A,
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