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ABSTRACT

An efficient Integral-Equation/Method of Moments (MoM)
technique is presented for the analysis of shielded planar
circuits (MIC's and MMIC's). Unlike traditional
approaches which implicate the Fast Fourier Transform
(FFT) to compute the slowly converging MoM matrix
elements, this technique is not restricted to uniform
meshes. This feature is exploited by introducing a new
modular meshing strategy with rectangular cells. The
entire formulation is extended to multilayer/multiconductor
substrates.

INTRODUCTION

The main obstacle towards the development of efficient
Moment Method (MoM) techniques for shielded planar
circuits stems from the excessive CPU time required to fill
the corresponding impedance matrices [1]-[5]. The most
widely adopted solution to this problem is to use the Fast
Fourier Transform (FFT) in order to rapidly sum the
involved 2D sinusoidal series [1]-[2]. Unfortunately, the
FFT restricts the underlying discretization to uniform
meshes. This , can introduce redundant unknowns and
hinders the accurate description of the circuit geometries.

Recently, a new technique has been proposed for
significantly reducing the MoM matrix filling time even
in the case of non-uniform meshes [4]-[5]. The technique
begins by extracting the asymptotic part of the 2D box
Green's function modal summation. This allows to
separate the MoM matrix into Frequency-Dependent (FD)
and Frequency-Independent (FI) parts. Subsequently, the
convergence of the remainder (FI) sum is accelerated by
means of an integral transformation. The original
formulation is now extended to multilayer/multiconductor
shielded substrates based on the equivalent transmission-
line representation of the multilayer Green's functions. The
entire process drastically reduces the overall CPU time.
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In the original work [4]-[5], the implemented MoM is
based on a non-uniform global rectangular mesh which is
constructed using unequally spaced parallel vertical and
horizontal lines [6]. Although this kind of a mesh is
much more flexible than the uniform one required by the
FFT, it still imposes certain undesirable discretization
limitations. Here, we present a new strategy for creating
the non-uniform rectangular mesh which offers significant
flexibility over [4]-[6] and leads to faster and more accurate
numerical results. The new strategy is based on a modular
approach in which the circuit-geometry is partitioned into
locally-discretized elementary rectangular objects.

SUMMARY OF THE FORMULATION

The general structure considered consists of passive
printed circuits on a shielded multilayer isotropic
substrate, as shown in Fig. 1. The corresponding Integral-

Equation for the planar currents J is given by [4]-[7] :
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Fig.1: The multilayer/multiconductor substrate enclosed in
a rectangular (box) cavity (axbxc).
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The associated potential dyadic Green's functions for x-
directed currents are [4]-[5]:
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where the coefficients VIE(z,z/, @), Vid(z,z', o)
represent voltages on equivalent transmission lines for
each TE,/TM, waveguide mode [8]. In order to accelerate
the computation of the double summations (2) and (3), we
introduce the (FI) asymptotic components of the potential
Green's function GXTE,GTE,GIM as described in [4]-
[5]. These "caret" components are obtained by the
asymptotic evaluation of VIE(z,z’,0), Vi¥(z,2,0) as
the indexes m,n tend to infinity. Subsequently, the
asymptotic components are added and subtracted to

equations (2),(3) resulting to Kummer's series
acceleration method [9]. Finally, the convergence of the

slowly-convergent (FI) components G E,GIE,GT™ s
enhanced by a suitable integral transformation technique.

Equations (4) and (5) describe the transformed (FI) TM
part of the scalar potential Green's function for Fig.1:
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where g;(z’)=¢;+¢€;,; and g;,¢;,, are the permittivities
of the two layers adjacent to the source interface at  z’.
Note that, due to the preresence of the fast-decaying
modified Bessel function K, only 2-3 terms suffice in
(5) to achieve convergence. Equations (4)-(5) imply that
the asymptotic interaction between the observation and
source points (z,z’) vanishes when they do not lie on
the same interface. To the same degree of asymptotic
approximation, when the points (z,z’) do lie on the same
interface, no reflections arrive at z =z’ from any other
interface. Although asymptotics that partially account for
layer reflections can easily be constructed [10], it is judged
that equations (4)-(5) lead to the best compromise
between speed and algorithmic robustness.
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For the (FD) computations, the required voltage
coefficients are computed recursively based on a specially
adapted reflection-coefficient approach [8]. As a
consequence , only exponentials of negative arguments are
evaluated for evanescent modes, thus ensuring overall
numerical stability.

MESHING STRATEGY AND RESULTS

Consider the geometry of Fig. 2.a which can be
encountered , for example, as a part of an interdigital filter.
The horizontal fingers are deliberately chosen of slightly
different lengths, a situation which is not uncommon in
practice. When the global meshing strategy with
horizontal and vertical parallel lines is attempted [4]-[6],
very fine vertical mesh lines appear at the open ends of the
fingers, as shown in Fig. 2.b. This unnecessarily fine
discretization can cause numerical problems and strain the
entire computational effort.

Fig. 2.a An example circuit geometry for which a

global-mesh becomes inefficient (see text).

Fig. 2.b The obligatory mesh-lines for a grid of non-
uniformly spaced horizontal & vertical parallel lines.



To overcome this type of problems, we adopt here a
different , modular , meshing strategy: First, the global
geometry is divided into elementary rectangular objects as
shown in Fig. 3.a and with the associated topological
object connectivity information stored in an appropriate
matrix. The challenge now is to discretize each object
individually but at the end to ensure that local meshes
conform to each other. For this purpose, before starting the
individual meshing process, a set of possible constraint
nodes (CN) is identified on the perimeters of the objects.
The (CN) set consists of two nodal subsets, the direct
(CNd) and the indirect (CNi) subsets of nodes. The (CNd)
are vertices which lie on the sides of other objects as
denoted with black dots in Fig. 3.a. The (CNi) nodes arise
as a consequence of using rectangular cells and rooftop
basis functions: In this case, each (CNd) node introduces
one vertical and another horizontal obligatory mesh lines,
which are traversed until an object is encountered that is
not directly connected to the previous one. In this manner,
the (CNi) nodes are identified as marked with crosses in
Fig. 3.a. Subsequently, the perimeter of each object is
meshed individually based on the (CN) and on the desired
discretization step A (1/A=cells-per-wavelength). In this
way, all common object sides are uniquely partitioned.
The final result of the new meshing strategy for the
example under consideration, is illustrated in Fig. 3.b.
The flexibility of the proposed strategy becomes apparent
when comparing Fig. 3.b with Fig. 2.b.
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Fig. 3.a The circuit geometry of Fig.2.a when
divided into rectangular objects and the
associated constraint nodes (CNd denoted by
dots, CNi denoted by crosses).
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Fig. 3.b The result of the new meshing strategy.

The entire CAD procedure is being implemented on a
HP9000/730 workstation. As a demonstration we present
in Fig. 4, a simple shielded notch filter which is meshed
according to the above modular strategy. The
corresponding simulated and measured results are presented
in Figures 5.a and 5.b for the magnitude and phase of the
insertion loss, respectively.
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Fig.4: A three coupled-line notch filter in a box of
67X67X11.4 mm and the associated mesh.
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Fig. 5.a The computed and measured magnitude of the
insertion loss. The first dip at 4.62 GHz is due to
a box resonance while the second at 5.2 GHz is
due to the circuit.
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Fig. 5.b The computed and measured phase of the
insertion loss.

CONCLUSION

An efficient and rigorous CAD procedure has been
presented for shielded planar circuits on multilayer
substrates (MIC's and MMIC's). Unlike traditional MoM
approaches for this class of problems, the underlying
computational technique remains efficient even for non-
uniform meshes. This feature is exploited by introducing a
new modular meshing strategy with rectangular cells. Due
to its modularity, the strategy can naturally be generalized
to meshes consisting of both rectangular and triangular
cells. This can lead to a CAD procedure for shielded
MMIC's which combines maximum discretization
flexibility together with high computational efficiency.
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