

Photonic Crystals: Part I Photonic Crystals for High Power Microwaves

K. Agi¹, M. Mojahedie¹, L.D. Moreland², E. Schamiloglu³, K.J. Malloy¹

¹Center for High Technology Materials University of New Mexico

> ²Lockheed Martin Denver, Colorado

³Electrical and Computer Engineering Department University of New Mexico

Acknowledgements

J. Sadler, H. Pohle Phillips Laboratory PL/WSMS Kirtland Air Force Base, NM

OUTLINE

- **n** Introduction
- **n** High Power Microwave Experiments
- **n** Infrared Experiments
- n Conclusions

INTRODUCTION Brief History of Photonic Crystals (PCs)

- n Originally proposed by E. Yablonovitch and S. John (1987)
- n PCs are to EM waves as real crystals (i.e. semiconductors) are to electronic waves
- n Helmholtz equation <-> Schrodinger equation
- **n** Concepts from solid state physics are used for PCs
- n Differences exist between EM waves and electronic waves (e.g. rest mass, spin, charge, etc.)

INTRODUCTION Multi-Dimensional Photonic Crystals

Three-Dimensional PC

Two-Dimensional PC

INTRODUCTION Applications

- n Printed Antenna Substrates (E.R. Brown-LL)
- n Spatial Filtering
- n Beam Shaping
- **n** Frequency-Selective Reflectors
- n Ultra-Wideband Applications

INTRODUCTION Face-Centered-Cubic Structure A ТВ LEVEL 1 (A) LEVEL 2 LEVEL 3 (B) **(C)** C

HPM EXPERIMENTS Crystal Responses

HPM EXPERIMENTS

Experimental Set-Up

Beam Parameters					
Beam Current	Power Density	RF Frequency	Power		
4.0 kA	270 kW-cm ⁻²	9.6 GHz	400 MW		

HPM EXPERIMENTS Spatial Filtering

HPM EXPERIMENTS

Beam Shaping

HPM EXPERIMENTS Summary

Diffracted and Transmitted Power From -5° to 5°

Direct Transmission	173MW
(Reference)	(0 dB)
Metal Plate	42MW
(Reflector)	(-6 dB)
In-Gap PC	28 MW
(2 Periods)	(-8 dB)
Out-of-Gap PC	60 MW
(1 Period)	(-4.6 dB)

HPM EXPERIMENTS

Frequency-Selective Reflector

Metal

PC

Beam Current	Power Density	RF frequency	Power
5.1 kA	325 kW-cm ⁻²	9.7 GHz	450 MW

IR EXPERIMENTS Experimental Set-up

Source:

HP 83623A Sweep Generator:0.01-20 GHz Logimetrics TWT Amplifier:8-18GHz 200W Output Power

Camera:

Amber Engineering 4256 IR Camera Liquid Nitrogen Cooled 256x256 InSb FPA 3-5µm Range 30 Hz Frame Rate

IR EXPERIMENTS

"X-Ray Diffraction"

IR EXPERIMENTS

8.5 GHz Excitation

9.5 GHz Excitation

10.5 GHz Excitation

CONCLUSIONS

- For HPM:
- n Spatial Filtering
- n Beam Shaping
- **n** Higher Power Densities
- **n** Frequency-Selective Reflector
- For IR:
- **n** Determination of Energy Distribution
- n Analogies to X-Ray Diffraction

Applications UWB Photonic Crystal

