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ABSTRACT

The concept of a scaled group delay time is applied to a finite one-dimensional periodic array
of dielectrics as a means of obtaining a group velocity. The scaling factor is shown to be the
physical distance and this derived group velocity is compared to the group velocity of an
infinitely periodic structure. Joint time-frequency analysis is performed on the response of a
one-dimensional structure and the time-to-formation of the pass bands is shown to be
determined by the peak group velocity in a given band. These concepts are then extended to
three-dimensional photonic erystals and shown to give good agreement.

INTRODUCTION

Photonic crystals (PCs) are three- or lower-dimensional periodic dielectric structures that
exhibit pass- and stop-bands. The one-dimensional PC has a wide range of applications in the
optical domain as reflectors, filters and anti-reflection coatings'. However, for lower
frequency microwave/RE applications, conventional technology has limited the use of the one-
dimensional PCs. On the other hand, the two- and three-dimensional PCs, such as frequency
selective surfaces (two-dimensional) or photonic bandgap crystals (three-dimensional), have
found some applications in the microwave domain such as substrates for narrowband
antennas’, filters’, and frequency selective reflectors for high power microwave systems’.
For ultra-wideband (UWB) systems, usage of PCs requires a better understanding of the time
evolution of the pass- and stop-bands in the crystal. Fortunately, the ability to generate short
electromagnetic pulses has made it possible to investigate the interaction of UWB signals with
highly dispersive structures’. This paper addresses the issue of the band formation in PCs.
Initially, one-dimensional structures are used to gain insight to the problem, and subsequently
the ideas are extended into the experimental properties of a three-dimensional structure.

ONE-DIMENSIONAL PHOTONIC CRYSTALS

The analysis of one-dimensional PCs begins with the study of an infinitely periodic
array of dielectric slabs. In order to study the evolution of the pass- and stop-bands, the
group velocity of the system needs to be calculated. The group velocity is the inverse of the
first derivative in the Taylor series expansion of the Bloch propagation constant (K) about a
given frequency®. For this simple case, the required dispersion relation (@ vs. K) can be
obtained analytically by applying periodic boundary conditions to the electric field.

To determine the evolution times in a finite periodic structure, a group velocity needs
to be defined which should approach the group velocity of an infinitely periodic crystal in the
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Figure 1. Magnitude (thin line) and unwrapped phase (thick line) of the transmission response of a 10 period
multi-layer dielectric structure. d,=d,=0.635 cm, n;=3.162, n,=1. The inset is the corresponding dispersion
curve obtiined from the eigenvalue equation for the infinite structure.

Jimiting case. In order to discuss group velocily, the concept of group delay, which is simply
the derivative of the phase of the transfer function with respect to frequency’, is utilized. If
the group delay is scaled by a length, the result is the desired group velocity.

In order to obtain the phase of the transfer function. a transmission line model 1s used.
In this model, one period of the dielectric multi-layer is represented by two transnussion lines
with characteristic impedance Z;, length d;, and propagation constant k;, for i=1.2, such that
the overall ABCD matrix can be obtained®. The one period matrix is raised to the power of N,
where N is the number of periods in the structure, and hence the transmission coefficient can
be determined from the resultant matrix®. Figure I shows the transmission magnitude and
unwrapped phase through the structure with the corresponding dispersion curve for the
infinitely periodic structure shown as an inset.

To determine the scaling factor, consider an infinitely periodic structure. The relation
between any field point and a field point NA away is given by Bloch’s transformation
theorem:

E(x+ NAK) = Elx, Ky

where N is the number of periods and A is the physical length (A=d+d2) of one period. The
ratio of the two fields leads 1o a transfer function whose magnitude is 1 and whose phase, @,
is KNA. The derivative of the phase with respect to frequency, which is the group delay, is
aiven by

9D _ NA
Jo v,

From the above it is clear that the scaling factor is the physical distance of the structure as
opposed to the optical path length (A=d;+d; vs. njdj+nads, where n; is the index of
refraction). Figure 2 shows the comparison of the group velocity of the infinite structure
(markers), calculated from the derivative of the dispersion curve, with a 10 period multi-layer
(solid line), calculated from the scaled group delay. Away from the (ransition regions
between the stop bands and the pass bands (i.e. band edges), the infinitely periodic result is
approximately the average value of the finite structure. Near the band edges there is an
insufficient number of periods to approximate the group velocity to any reasonable accuracy.

However, the work here will be relying on the peak group velocity which occurs well away
from the band edges.
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Figure 2. Group velocity calculated for the infinitely periodic array of dielectrics (markers) and a 10 period
tinite periodic structure (solid line). The inset is an expanded view of the first band.

The joint time-frequency analysis (JTFA) response can be obtained from the
transmission response in Figure 1. Figure 3 shows the spectrogram using an adaptive, short-
time fourier transform and Gabor algorithms’, where in all cases, the vertical axis is time, the
horizontal axis is frequency and the relative intensities are shown as the spectrogram.
Independent of algorithm, the time-to-formation of the pass-bands, which is the start of the
pulse to where the first wave appears, is governed by the peak group velocity. In other
words, the first wave to appear is the undiffracted wave that is traveling at the peak group
velocity for a given pass band. For all bands, there 1s good agreement between the delay time
obtained from the JTFA spectrogram, the scaled group delay obtained from the phase of the
transfer function and the derivative of the dispersion curve for the infinitely periodic structure.
A summary of the results is given in Table 1.

Table 1. Summary of the group velocities obtained by scaling the JTFA delay time, scaling
the group delay and the derivative of the dispersion curve for the infinitely periodic structure.

Band Number JTFA (cm/s) Group Delay (cm/s) Infinite (cm/s)
1 1.41x10" 1.29x10' 1.308x10""
2 1.12x10" 0.97x10"" 0.99x10™
3 1.01x10" 0.94x10" 0.97x10"

On the other hand, the completion of the band, which is defined as the time from the start of
the pass band to the end of the pass band, is difficult to deduce from the JTFA due to the
algorithm dependence of the spectrograms. Hence it is difficult to differentiate between the
real features and the extraneous ones. In other words, the decomposition of the time signal,
to obtain the JTFA spectrogram, is dependent on the basis of the decomposition. This basis
dependence creates cross-terms in the spectrogram which may be mistaken for real features.
Hence, to avoid this dependence, the focus will be the formation time.

THREE-DIMENSIONAL PHOTONIC CRYSTALS

The concepts developed in the one-dimensional case are extended here. For the three-
dimensional PC, a four-period face-centered-cubic structure is used. A detailed description of
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Figure 3. Joint time-frequency analysis using (a). adaptive algorithm, (b). short-time fourier transform and
(¢). Gubor transform. The time-to-formation of each pass band is determined by the undiffracted wave that is
traveling at the peak group velocity for the particular band.

the structure can be found in the paper by Brown, et al'’. The transmission response (S») of
the PC is experimentally obtained using a vector network analyzer (HP 8510) from 15 to 25
GHz. Here the phase information is preserved, hence the group delay can be calculated.
Figure 4 shows the magnitude and unwrapped phase for the frequency response of the crystal
at normal incidence (L-point), obtained in the experiment. The points shown in Figure 4 are a
linear curve fit to the data. This facilitates the determination of the slope and hence the group
delay for the structure. In order to obtain the group delay, the slope of the phase curve is
divided by 2 to scale the frequency into radian frequency correctly. Since there are only two
pass bands that exist in the frequency range of the network analyzer, the calculations of the
group delays will be limited to these two bands.
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Figure 4. Magnitude and unwrapped phase of the experimental transmission response of a tour-period, three-

dimensional, face-centered-cubic photonic crystal. The points are a linear fit to the phase data which facilitate
in the determination of the slope to obtain the group delay.



Table 2. Comparison of group delay and JTFA delay for various angles of incidence for the
three-dimensional PC.

Crystal Direction Band Number | Group Delay (ns) | JTFA Delay (ns)
L) 2 1250 13
K-point (35.26°) ; g:ggg :‘9’
W-point (39.2°) ; ?:g‘:g }:g

As in the one-dimensional case, the transmission response is inverse fourier
transformed and the JTFA spectrogram is obtained. The adaptive algorithm is used to
determine the spectrogram and is shown in Figure 5. Once again, the time-to-formation is
determined from the delay in the spectrogram and calculated from the derivative of the phase.
Here, the group delays can be compared directly using the two methods since there is no
scaling factor in calculating delay times. For the three-dimensional PC, the transmission
response for various high-symmetry directions (incident angles) are measured and the
corresponding delays are calculated. The results are shown in Table 2. Good agreement is
obtained with the two methods in determining the time-to-formation of the pass bands.
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Figure 5. Joint time-frequency response, using the adaptive algorithm, of a four-period, three-dimensional face-
centered-cubic photonic crystal at normal incidence. The delay shown is in good agreement with the group
delay calculated by taking the derivative of the phase.



In summary, a group delay (velocity) is derived for a finite periodic structure. For the
one-dimensional PCs, the group velocity is compared to the group velocity obtained by taking
the derivative of the dispersion curve for an infinitely periodic structure. It is determined that
the first wave to appear in all cases is the one travelling at the peak group velocity for each
band. For the three-dimensional structure, the complex transmission is experimentally
obtained and the phase is used, as in the one-dimensional case, to determine the group delay
in the bands. The group delay is then compared to the results obtained using JTFA, where,
the JTFA algorithm provides a method of pictorially obtaining a delay. Good agreement is
obtained using the group delay and the JTFA algorithm for both the one-dimensional and
three-dimensional structures.
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