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 Abstract:  A series of experiments in recent
years have shown that under carefully
designed circumstances the group velocity,
or even more surprisingly the energy
velocity can exceed the speed of light in
vacuum or become negative (abnormal
velocities).  These abnormal results have led
some researchers to question the validity of
special relativity, or at least cast doubt on
the relevance of these principles to the
aforementioned experiments.  In this work
series of experiments with single
electromagnetic pulses measured in both
time and frequency domain are described.  It
is seen that while these experiments verify
the aforementioned abnormal velocities,
they are not in contradiction with the
principles of special relativity (Einstein
causality).  In this regard, the important
concept of “front” or “Sommerfeld
forerunner” is reintroduced, and it is argued
that the only physical velocity required to
obey the Einstein causality is the “front
velocity.”

I. Introduction
The fact that the group velocity of an

electromagnetic wave packet (pulse) can
exceed the speed of light in vacuum
(become superluminal) has been
demonstrated in many experiments using
single photons 1, 2, at optical frequencies 3,
and using microwaves 4-10.  As a starting
point, an interested reader may consult the
review by Chiao and the references therein
1 1 .  Despite one’s initial impression, the

superluminal group or even energy
velocities (defined as the ratio of the
Poynting vector  to  the  s tored
electromagnetic energy) are not at odds with
the requirements of relativistic causality
(Einstein causality), and indeed it can be
shown that they must exist as the natural
consequence of the Kramers-Kronig
relations, which in themselves are a
statement of the system linearity and
causality 12-15.

The point that in the regions of
anomalous dispersion, group velocity can
become superluminal was first considered
by Sommerfeld and his student Brillouin 16.
In their studies, they examined a
sinusoidally modulated step-function
propagating through a medium with
Lorentzian dispersion.  They identified five
different velocities: phase, group, energy,
Sommerfeld forerunner (“front†”) and
Brillouin forerunner velocities‡.  However,
with the passage of time, and for reasons
unknown to the authors, while the first three
velocity terms have received much attention
in both undergraduate and graduate books,
the latter two have not enjoyed the same
status.  This is even more surprising since,
among the above velocities, it is only the

                                                  
†  To be more rigorous the term “front” refers to the
onset of Sommerfeld forerunner propagation.
‡ To be complete one has to add the term “signal
velocity” defined as the velocity of the half
maximum point to the list.  However, by their own
admission such a definition is arbitrary 16 and as
discussed in Ref. (4) can become superluminal.



velocity of the “front” that must satisfy the
requirements of Einstein causality under all
circumstances.  In other words, it is rather a
naïve understanding of Einstein causality to
equate the group velocity with the velocity
of information transfer under all
circumstances, particularly when one is
concerned with the propagation of
“attenuated traveling waves§.”

Our objective here is to discuss the
phenomenon of superluminal and negative
group and energy velocities which
generically is referred to as the abnormal
velocities.  In Sec. II a time-domain
experiment used to detect the superluminal
group velocities in the case of a one
dimensional photonic crystal (1DPC) is
described.  Section III discusses a
frequency-domain experiment used to
demonstrate the same superluminal
phenomenon.  The case of superluminal or
negative group and energy velocities for an
inverted medium (medium with gain) or in
the case of medium with negative index of
refraction is considered in Sec. IV.  Section
V is intended to put the reader’s mind at
ease by providing some general arguments
on why the abnormal velocities discussed in
the previous sections are not in contradiction
with the requirements of special relativity.
Section VI is our condensed attempt is
addressing the issue of superluminality in
the limit of very weak light (very few
photons).  Our final remarks and a
discussion for the general public can be
found in Sec. VII.

II. Time-domain Experiment
Consider  the  problem of

electromagnetic wave propagation through a
periodic structure.  Figure 1 shows an
experimental setup used to detect the
superluminal group velocity for a

                                                  
§  We have used the term “attenuated traveling
waves” in the same sense as in Ref. (17), although,
sometimes the term evanescent is used to signify the
same thing.

microwave wave packet tunneling through a
1DPC.  A backward wave oscillator (BWO)
was used to generate the pulse, and a mode
converter (MC) was used to convert the
TM 01 mode of the BWO to a TE11.  The
pulse was then radiated via a conical horn

antenna (CHA).  The frequency output of
the source was tuned to the mid-gap
frequency of the 1DPC at 9.68 GHz
(FWHM of 100 MHz) and was detected by
two HP 8470-B, Schottky diode detector
(provided in pairs).  The CHA radiation
intensity was sampled along two distinct
directions (paths), referred to as “side” and
“center”.  A series of microwave pulses
were fired in order to measure and then
remove the time difference between the two
paths due to the differences in cable lengths,
internal detection of the oscilloscopes
(Tektronix SCD 5000) and other
incompatibilities.  This measured time
difference was electronically compensated
such that the peaks corresponding to the
pulses traveling through the “center” path
and “side” path in the absence of the 1DPC
arrived at the same time.  At this point, the
1DPC was inserted along the “center” path
and series of single pulse were fired.  Figure
2 shows the result.  It is seen that the peak of
the wave packet propagating along the
“center” path and tunneling through the
1DPC arrives ( )440 20±  ps earlier than the
accompanying pulse propagating through
free-space along the “side” path.  This
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Fig. 1:  Time-domain experimental setup



advancement in time for the tunneling pulse
can easily be translated to a measure of the
pulse group velocity, indicating that the
tunneling wave packet propagated with a

group velocity ( . . )2 38 0 15± c .
Furthermore, the traditional view of

pulse propagation through a region with
high attenuation (regions of anomalous
dispersion) held that the extreme

attenuation, coupled with the dispersion,
would distort the signal to such an extent
that the originally well defined wave packet
and its peak would not be recognizable upon
the emergence from such a medium 17 16.
Figure 3 shows that in contrast to this
common belief, the tunneling wave packet
of Fig. (2) suffered minimal dispersion such

that the FWHM of the pulse after tunneling
was only increased by 1.5%.  In obtaining
this figure the tunneling wave packet was
manually moved to later times as to make
the comparison between the two pulses
easier.  A full description of the above
experiment can be found in Ref. (4).

III. Frequency-Domain Experiment
In the last section the feasibility of

measuring superluminal group velocities
directly in time-domain was discussed.  This
abnormal behavior can also be demonstrated
in frequency-domain.  Figure 4 shows the

free-space setup used to detect the
superluminal group velocities in frequency-
domain.  The setup consists of two K-band
standard horn antennas (SHA) configured a
transmitter and receiver and connected to
ports 1 and 2 of an HP 8722D vector
network analyzer (VNA).  The radiated
quasi continuous waves are collimated using
two microwave lenses and the setup is
enclosed in a anechoic chamber to reduce
stray signals.

The essence of the approach is to
measure accurately  and reliably the
transmission phase associated with the
1DPC.  Once this quantity is measured, the
group delay ( τ g ) and group velocity (Vg )

can be calculated according to
τ ∂ φ ∂ ωg = − , (1)
v

c

L

c

L

c
g pc

g

pc= =
−

( )τ ∂φ ∂ω
, (2)

where φ is the transmission phase, and Lpc

is the physical length of the 1DPC.
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Fig. 2:  Superluminal propagation for the tunneling pulse
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Fig. 3:  A measure of the pulse broadening due to
tunneling through the 1DPC.  The two pulses have
propagated along the same path (“center”); one in the
free-space and the other through the 1DPC.
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Fig. 4:  Frequency-domain experimental setup
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Fig 5:  The unwrapped transmission phase for the
1DPC with various number of Eccostock®

dielectric slabs.

 Fortunately, recent advances in non-
coaxial (free-space) calibration techniques
for VNA such as the “Thru-Line-Reflect”
(TRL), 18, 19 make it possible to measured
the transmission coefficient accurately and
reliably.  After calibrating the system
(without the 1DPC), a reference plane of
unit magnitude for transmission magnitude
and zero phase for φ is established midway
between the two SHAs.  At this point, the
1DPC is inserted and the receiver horn is
moved back exactly by a length equal to the
thickness of the 1DPC ( Lpc).

Figure 5 is the calculated (solid line)

and measured (dotted line) unwrapped phase
for a 1DPC with four, three, two and one
dielectric slabs (the spacer is always air).
The theoretical calculations are based on the
diagonalization of one period matrix, and is
presented in Ref. (5).

According to Eqs. (1) and (2), to
ascertain the group delay and group velocity
the data presented in Fig. 5 must be
differentiated.  However, differentiating a
noisy data amplifies the noise and may lead
to spurious effects.  To avoid the
arbitrariness associated with smoothing, a
best nonlinear least square fit of the
experimental phase data is obtained.  The
parameters used in fitting the experimental
data all match the actual variables very well

and for the sake of brevity are not given
here, but can be found in Ref. (5).

Figure 6 shows the result of the least
square fit to the phase data of Fig. 5 together

with Eq. (1), in order to determine the group
delay in a 1DPC with one, two, three, and
four dielectric slabs.  Consequently, the
normalized group velocity given by Eq. (2)

can be obtained from the Fig. 6 and is shown
in Fig. 7.  Along with the velocities derived
from the fit (dotted curves), the theoretical
group velocities calculated from the
measured values of thicknesses and indices
are also shown (solid curves).  As Fig. 7
indicates, in the case of N=4 and N=3, a
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Fig. 7.  Normalized group velocity for the 1DPC.
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the fitted curves (measurement) and the
calculated curves (theory) are given in Ref (5).



maximum superluminal group velocities 3
and 2.1 times c is observed.  The results
depicted in this figure cab be interpreted as
the following.  If one is to construct a pulse
entirely composed of the frequency
components for which the superluminal
behavior is predicted, then the pulse is
expected to propagate with group velocity
exceeding c , similar to the situation
discussed in the Sec. II.

IV. Abnormal Velocities in Inverted
Medium and Medium with Negative

Index
The circumstances under which the

group or even energy velocity are abnormal
are not limited to the evanescent wave
propagation discussed so far.  In this section
three situations are described which exhibit
the aforementioned abnormal behavior.

First, for an inverted medium
(medium with gain) described by a Lorentz-
Lorenz dispersion, the index of refraction is
given by

n
i

pω
ω

ω ω γω
( ) = −

− −








1

2

0
2 2

1 2

(3)

where ω0 is the resonance frequency, γ is a
small damping factor, and ωp  is the

effective plasma frequency.  Note that a
negative sign precedes the second term
under the square root due to the population
inversion of the medium.  A plot of the
index of refraction for both the inverted and
non-inverted medium is shown in Fig. 8.
From the figure it is clear that for an
inverted medium, in the limit of very low
frequencies, the index is less than one
implying that the phase velocity is
superluminal.  More importantly, at the low
frequencies, the group velocity given by

V
c

n dn d

c

n
V c

g

p

0

0
0

0

( ) =
( ) +[ ] =

( )
= ( ) >

→
ω ω ω

ω (4)

is also superluminal.  Under these
circumstances the energy velocity (Ve),
given by the ratio of Poynting vector ( S), to
the stored energy density ( u), is also equal
to the phase and group velocity and exceeds
the speed of light in vacuum.

V
S

u

c

n
V ce p= =

( )
= ( ) >

0
0 (5)

The equivalence of the above three

velocities is merely a statement of the fact
that in the limit of low frequencies the
medium is transparent and dispersionless 13.

Second, it is also possible to observe

nega t ive  group  ve loc i t i es  fo r
electromagnetic (EM) pulses tuned slightly
away from a gain line of an inverted
medium. 14, 20-22.  The physical meaning of
a negative group velocity can be explained
as the following.  Consider two cells of
physical length L  containing an inverted
medium and vacuum as shown in Fig. 9.

L

Vacuum

Inverted Medium

Fig. 9:  Two cells of equal length containing
inverted medium and vacuum.

Fig. 8:  The real part of the index of refraction for
an inverted medium (solid curve) and non-inverted
medium (dashed curve.)



The time difference between two well
behaved identical EM pulses propagating
through the lower (inverted) and the upper
cell (vacuum) is given by

∆t t
L

V

L

c

L

c
ng vac

g
g= − = − = −( )τ 1 (6)

where ng is the group index.  From the

above equation it is clear that if the group
index is zero the time difference between the
two pulses is given by the negative of L c
In other words, when one of the EM pulses
is at the exit face of the lower cell the other
pulse is about to enter the upper vacuum
cell.  Stating this point differently, if one
only consider a single cell containing the
inverted medium, for a negative group
index, the peak of the transmitted wave
packet leaves the cell prior to the peak of the
incoming wave packet entering the medium.
It must be pointed out that as shown by
Landauer 23-25 it is naïve to regard the peak
of the outgoing pulse as the causal response
of the medium to the peak of the incident
pulse.  The theoretical prediction by one of
us 22 regarding the feasibility of detecting
negative group velocity was recently
verified in an experiment by Wang 26 in
which the inverted medium was a cell
containing Cesium vapor.

Finally, let us consider a situation for
which the medium effective index is a
negative value.  A point worth emphasizing
is the fact that for these media it is the
effective index and not the actual material
index which is negative.  In other words, the
wavelength of the incident wave is many
times larger than the physical size of the
components comprising the media, allowing
one to characterize the over all response of
the media in terms of an effective index.

The first theoretical work in this area
was done by Veselago 27, 28, and the more
recent interest in the subject was reignited
by the work of Pendry 29, 30 and Smith et. al.
31, 32, which demonstrated the possibility of
manufacturing these media at microwave

frequencies.  Figure 10, shows the
dispersion relation for a negative index

medium, borrowed from Ref. (32).  From
the figure it is clear that for a certain
frequency range, the derivative of the curve
depicted in Fig. 10, (i.e. the group velocity)
is negative.  Even more surprising is the fact
that the energy velocity, given by Eq. (7), is
also negative, since in these media both
permittivity and permeability are negative
parameters.

  

V
E H

E H
e ∝ ×

+

r r

r r
ε µ

2 2 (7)

The presence of negative group and
energy velocities for the above media can be
understood in the following manner.  The

negative index medium, considered by
Smith et. al. 31, is in essence a distributed

Fig. 10:  The dispersion curves for a medium
with negative effective index
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Fig. 11:  Transmission magnitude and phase for
the LRC circuit shown in the inset.



LRC transmission line that its response can
be approximated by a lumped LRC circuit.
The inset in Fig. 11 is a typical LRC circuit
that exhibits negative group delay in the
region of maximum attenuation**.  Once
again, if one is to construct an EM pulse
mostly composed of frequency components
having negative group delays, it is expected
that the group and energy velocities for this
EM pulse to be negative.  We currently are
pursuing the detection of the aforementioned
abnormal velocities in the negative index
media.  We end this section by pointing out
that in addition to negative velocities, the
negative index medium has many other
interesting properties such as inverted
Doppler shift, Cherenkov radiation, and
Snell’s law.

V. Superluminal Velocities and Einstein
Causality

In so far we have discussed
situations for which the phase, group, and
energy veloci t ies  are abnormal
(superluminal or negative).  The reader may
began to wonder whether or not these
abnormal velocities are in contradiction with
the requirements of relativistic causality.
The short answer to this question is that
under no circumstances the so called “front
velocity” may exceed the speed of light in
vacuum, and in fact under all circumstances
the “front velocity” is exactly luminal.  In
other words, the requirement of Einstein
causality that no “signal” (information) can
be transmitted superluminally is satisfied in
all cases, since the “front velocity’ is always
luminal.  This means that the presence of the
genuine information should not be
associated with the pulse maximum, half
maximum, or the envelope, but indeed is
contained within the singularities (points of
                                                  
**  In obtaining Fig. 11, in contrast to the curves

depicted in Fig. 5, a time dependency of e i t− ω  in

place of e j tω  was used.  In other word, the group
delay has the opposite sign of that shown in Eq. (1).

non-analyticity) of the pulse.  Because of the
important role played by the “front” in
satisfying the requirements of special
relativity, let us briefly discuss some of the
most general ideas associated with this
concept.  The interested reader may consult
the Ref. (4) for more detailed analysis.

The essential point to remember is
the fact that any physically realizable signal
is restrictively time-limited.  In other words,
any electromagnetic signal created and later
propagated through free-space or a 1DPC
must be generated at a point in time and
space.  One can then always point to a time
prior to which the signal did not exist.  This
point in time, or more precisely the transient
“turn on times,” are points of non-analyticity
for which the amplitude of the pulse or its
first or higher derivative are discontinuous.

The importance of these points of
non-analyticity becomes clear when
considering the following.  While the future
behavior of a truly analytical signal such as
a Gaussian wave packet can be completely
predicted by means such as a Taylor
expansion (or a Laurent expansion for
functions that are holomorphic in an annular
region), the presence or arrival of the
singularities do not yield themselves to such
an extrapolation.  Moreover, as discussed in
the above, no physically realizable signal
can be presented by an entire function††

hence, any communication of information
must involve the transmission of the “front”.
To summarize, there is no more information
in a pulse peak or envelope that is not
already contained within the earliest parts of
the signal.

The mathematical proof that no
signal (information) may be detected sooner
than t x c0 =  can be seen via contour
integration of an expression such as Eq. (8).
Equation (8) describes the field at the
position x  and time t  for a wave packet
                                                  
†† An entire function is the one that is analytical
everywhere in the complex domain.



impinging at normal incident on a medium
characterized by an index of refraction, n ,
33.

u x t
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Transforming the integral in Eq. (8) into the
complex domain and closing the contour
over the upper-half-plan, along with
requiring that the medium characterized by
n  to be causal, and that the incident wave
packet has a “front,” are sufficient
conditions to show that the value of the
integral is identically zero for t t x c≤ =0  or
equally for velocities, V x t c= > .  The
condition that the medium characterized by
n  is causal, means that for this medium the
effect can not proceed the cause.
Mathematically this is expressed as
G τ( ) = 0 for τ < 0, where G τ( ) is the
susceptibility kernel given by

G e diτ
π

ε ω ε ωω τ( ) = ( ) −[ ] −

−∞

+∞

∫1
2

10 .   (10)

For times immediately after t0 ,
( t t>≈ 0 ) the earliest part of the signal known
as the Sommerfeld forerunner or precursor
can be detected.  The frequency of
oscillation and the field amplitude for the
Sommerfeld forerunner are discussed by
Mojahedi et. al. 4, 34.  To summarize those
results, the frequency of oscillation is given
by

ωs G
t

t
= ′( ) −







0 2 1
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,  (11)

where ′( )G 0  is the time derivative of the
susceptibility kernel 33 evaluated at t = 0.
Furthermore, for the incident wave packet
proportional to tm  ( m  is an integer) the
Sommerfeld forerunner is described by a
Bessel function of order m  according to
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From the above discussion it is clear
that, for a given medium if the quantity

′( )G 0  is known, the calculation of the
Sommerfeld forerunner frequency of

oscillation and functional form is relatively
straight forward.  In other words, if one is
capable of calculating ε ω ε( ) − = −0

21 1n
for a 1DPC, undersized waveguide, or any
other photonic barrier used in the
superluminal experiments, then one can
perform the inverse Fourier transform and
the differentiation operation to obtain ′( )G 0 .
For example, let us consider the case of
1DPC used in the experiments discussed in
Sections. II and III.

At the normal incidence the
dispersion relation (K vs.ω) can be obtained
from
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Fig. 12:  Effective index for a 1DPC.  The
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where R  is the ratio of the indices given by
R n ni j= , Λ  is the one-period length

Λ = +d di j , and K  is the Bloch wave

vector.  The above equation can be used to
solve for the real and imaginary parts of the
Bloch wave vector, and Eqs. (14)-(16),
below, can in turn be used to transform the
photonic crystal spatial dispersion [Eq. (13)]
to a more manageable temporal dispersion

Re Ren n
c

Ke e( ) = ′ = ( )[ ]
ω

ω , (14)

Im Imn n
c

Ke e( ) = ′′ = ( )[ ]
ω

ω , (15)

n n n
c

Ke e e= ′ + ′′[ ] = ( )( ) ( )
/2 2 1 2

ω
ω . (16)

The results are shown in Fig. (12) which
displays our first attempt in obtaining an
effective index for a 1DPC, with 1, 2, …,
and infinite number of dielectric slabs.  The
next step is to perform the Fourier transform
indicated by Eq. (10), followed by the
differential operation evaluated at time equal
to zero.  Having obtained the quantity ′( )G 0 ,
the frequency of oscillation and the
functional form of the Sommerfeld
forerunner in a 1DPC can be arrived at with
the help of Eqs. (11) and (12).

VI. Superluminal Propagation and
Quantum Noise in the Limit of Very
Weak Pulse.

The question of superluminality in
the limit of very weak pulse (one or few
photons) was considered in a recent work 35.
For the sake of brevity, we refer the
interested reader to Ref. (36) for a complete
and detailed analysis of the situation.  Here,
we suffice to mention that according to
Aharonov et. al. 36  in the limit of few

photons, signal must be exponentially large
in order to distinguish it from the quantum
noise.  In other words, the signal-to-noise
ratio becomes vanishingly small.  In Ref.
(36) this assertion is investigated and it is
seen that if the condition stated by Aharonov
et. al. is replaced by a weaker condition, the
signal-to-noise ratio can exceed unity even
for one photon pulse.  It is worth mentioning
that the original experiment by Chiao and
Steinberg, 2 although involved the detection
of single photon, but the results were
interpreted in terms of statistics of many
photons.

VII. Concluding Remarks: A Discussion
for General Public

A simple yet interesting description
of superluminal propagation can be found at
web link
http://www.abqjournal.com/scitech/180964s
citech11-19-00.htm.
This article written by John Fleck, the
science writer for Albuquerque Journal, tries
to explain our newly published paper in
Physical Review E to the general public.  To
use John’s analogy consider two dragsters
competing against each other, driving the
same exact cars and traveling the same exact
distances.  However, whereas one of the
dragsters travels through air (vacuum if you
like) with the maximum allowable speed,
the other driver travels through a series of
barriers normally thought to slow his car.
The question is then the following: What
does the referee at the end line observe?
The answer depends on the referee detection
equipment.  If the referee is well equipped
with the most sensitive and expensive
detection systems he or she will observe that
the front bumpers of the two cars arrive at
the finishing line at exactly the same
instance.  The referee will also observe that
the bulk (the main body, the cockpit and the
driver) of the dragster’s car who tunneled
through the barriers reaches the end line



sooner than his challenger.  Interestingly, if
the race is decided by arrival of the cars
main body or if the referee is not equipped
with the most sensitive detection apparatus,
he or she will invariably call the race for the
tunneling dragster.
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