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ABSTRACT
The effective electric and magnetic properties are found for
a material composed of non-magnetic spheres. These para-
meters are found in the long-wavelength limit as a function
of the frequency, composition, size, and volume density of
the spheres. A fundamental resonant magnetic response
is found when polaritonic materials are used. The effec-
tive media parameters are verified by band structure calcu-
lations. Frequency ranges with negative permeability and
negative group velocities are found. This simple composite
extends magnetic materials into the infrared regime.
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1 Introduction

The recent interest in metamaterials has stimulated many
studies on how to design particular electromagnetic re-
sponses of composite materials by altering the geometry of
their constituent elements. The most notable and surprising
metamaterials that have been discovered include those with
negative permittivity [1] or negative permeability [2] in the
GHz range, and negative index materials [3], which are a
composite of the former two. However, such metamateri-
als are attractive in the GHz regime, where they are easy to
fabricate and the material losses are minimal.

Another method of creating a negative effective index
material is based on the use of photonic crystals [4, 5]. In
these structure, the inherent Bragg scattering can be made
to produce an effective negative angle of refraction which
is governed by Snell’s Law. These devices are more likely
suitable for optical frequencies. Unfortunately, since the
scattering effect requires a device geometry on the order
of a wavelength, some possible applications, such as phase
compensation, would not necessarily be more compact.

The magnetic response created by the split-ring res-
onators reported in Ref. [2] is not very practical for optical
frequencies. Other reports of two-dimensional magnetic re-
sponse in dielectric materials have been made, notably in
the GHz range using ferroelectrics [6], and in the infrared
range using polaritonic crystals [7].

This paper considers the electromagnetic scattering
from three-dimensional arrays of non-magnetic spheres as
a method for producing a magnetic and an electric response
in the infrared regime. It is shown in Section 2 that a col-
lection of non-magnetic spheres subject to an incident field
can be considered equivalent to a collection of resonantly
excited dipoles of electric and magnetic type. This equiv-
alence, when in the long-wavelength limit, leads to a defi-
nition of an effective permittivity and permeability for the
composite. Section 3 presents band structure calculations
for a simple cubic lattice of the aforementioned (polari-
tonic) spheres which confirm the theory.

2 Effective material parameters

The effective permeability of a collection of spheres with
an arbitrary material dispersion will now be derived. A dual
derivation gives the effective permittivity. The interested
reader will find the necessary background information on
scattering by dielectric spheres in Ref. [8].

To begin, consider a plane wave with wavenumber
k = ω/c incident on a single isolated sphere with relative
dielectric permittivityεr = n2

1
. The radius of the sphere

is r0. Let m = n1/n0, wheren0 is the index of the sur-
rounding medium, which is assumed to be free space for
the remainder of this work. Let the incident plane wave
have a magnetic field

Hi = H0e
ikzŷ, (1)

where a time dependence ofexp(−iωt) is assumed. The
2n-th multipole term of the scattered field is proportional
to the Mie scattering coefficients [8]

an =
mψn(mx)ψ′

n(x) − ψn(x)ψ′

n(mx)

mψn(mx)ξ′n(x) − ξn(x)ψ′

n(mx)
, (2)

bn =
ψn(mx)ψ′

n(x) −mψn(x)ψ′

n(mx)

ψn(mx)ξ′n(x) −mξn(x)ψ′

n(mx)
, (3)

wherex = kr0 andψn(x), ξn(x) are the Riccati-Bessel
functions. In particular, thea1 term represents the strength
of the electric dipole response, andb1 represents the
strength of the magnetic dipole response.
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It is now assumed that the frequency and sphere per-
mittivity are chosen such that the magnetic dipole response
of the sphere is excited, and it is dominant over all other
multipole terms. This condition is true when the denom-
inator of theb1 coefficient is close to zero. The far-field
approximation of the scattered magnetic field [8] is then

Hff
m =

3i

2
H0b1

eikr

kr

[(

ŷ · θ̂
)

θ̂ +
(

ŷ · φ̂
)

φ̂
]

= −

3i

2
H0b1

eikr

kr
r̂ × (r̂ × ŷ) . (4)

If the magnetic dipole resonance occurs at a frequency such
that wavelength outside the sphere is much larger than the
diameter of the sphere, the sphere may be replaced by an
equivalent effective magnetic dipole. This equivalent di-
pole has a momentm which radiates

Hff
e = −

k3

4π

eikr

kr
r̂ × (r̂ × m) (5)

in the far-field [9]. Equating (4) and (5) provides a link
between the equivalent magnetic dipole moment and the
Mie scattering coefficientb1 of a single sphere [10].

Proceeding with the above analysis, one can obtain
the response of a large collection of such dipoles, and in the
process obtain an effective relative permeability,µeff

r . The
induced magnetic dipole moment is related to the incident
wave bym = αmH0, where the magnetic polarizability
αm is found from the Clausius-Mossotti equation [9]

αm =
3

N

(

µeff
r − 1

µeff
r + 2

)

. (6)

HereN = 1/a3 is the number of dipoles per unit volume,
anda3 is the volume of a unit cell. The densityN can be
found from the filling fractionf of the composite,

f =
4πr3

0

3a3
=

4π

3
Nr3

0
. (7)

Finally, the resulting magnetic polarizability is

αm =
6πi

k3
b1, (8)

and the effective permeability is

µeff
r =

k3 + 4πiNb1
k3

− 2πiNb1
. (9)

A similar derivation gives the effective permittivity
εeff
r . In this case it is assumed that the dominant contri-

bution to the scattered electric field is proportional toa1,
which also behaves in a resonant manner. Again assuming
that the wavelength outside the sphere is much larger than
the sphere at resonance, an equivalent electric dipole mo-
mentp = ε0αeE0 may be defined. The resulting effective
relative permittivity is then given by

εeff
r =

k3 + 4πiNa1

k3
− 2πiNa1

. (10)
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Figure 1. Relative permittivity for bulk LiTaO3 whereε0 =
41.4, ε∞ = 13.4, ωT = 2.67×1013 rad/s, andγ = ωT /30.

3 Numerical results

3.1 Effective material parameters

Now that the effective permittivity and permeability of a
collection of spheres have been derived, it remains to be
seen how to excite these resonances, particularly the mag-
netic dipole.

A few years ago it was shown that a two-dimensional
array of dielectric cylindrical rods could excite a magnetic
response [6]. This initial work considered using ferroelec-
tric rods at GHz frequencies and was followed by a study
of polaritonic materials to push the response to infrared
frequencies [7]. The main requirement satisfied by both
of these reports is that the dielectric constant had to be
large to drive the magnetic response into resonance. This
is the reason why the magnetic resonance is actually the
fundamental resonance. In contrast, a traditional deriva-
tion of scattering by small spheres [8], which would only
consider low-valued dielectrics or metals, ignores the mag-
netic dipole term since its amplitude is very small. In such
cases the fundamental resonance is the electric dipole term,
which occurs whenεr = −2.

Here we follow the work in Ref. [7], in that we also
consider polaritonic materials. Let the sphere have a rela-
tive permittivity [11]

εr(ω) = ε∞

(

1 +
ω2

L − ω2

T

ω2

T − ω2
− iωγ

)

, (11)

where ε∞ is the high-frequency permittivity,ωT is the
transverse optical phonon frequency,ωL is the longitudi-
nal optical phonon frequency, andγ is the loss. In the re-
maining sections of this paper the material is assumed to
be LiTaO3, which has a static permittivity ofε0 = 41.4,
ε∞ = 13.4, andωT = 2.67 × 1013 rad/s [7], and it is as-
sumed thatγ = ωT /30. The longitudinal optical phonon
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Figure 2. Effective relative permittivity for a collectionof
LiTaO3 spheres. The radius of the spheres is4µm. The
filling fraction is26.81%.
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Figure 3. Effective relative permeability for a collectionof
LiTaO3 spheres. The radius of the spheres is4µm. The
filling fraction is26.81%.

frequency is found from the Lyddane-Sachs-Teller relation

ω2

L

ω2

T

=
ε0
ε∞

. (12)

Figure 1 shows the relative dielectric permittivity of bulk
LiTaO3. The phonon resonance at4.25 THz is easily seen.

The choice of LiTaO3 was made due to its large static
permittivity ε0. This makes it easier to create a strong res-
onance in the effective permeability. Other materials, such
as SiC, may have higher resonant frequencies, which would
result in the resonances being even further into the infrared
range, however this would be at the cost of having weaker
resonance amplitudes.

The effective electromagnetic parameters of a large
collection of spheres are presented in Fig. 2 and Fig. 3.
The radius of the spheres is4µm and the filling fraction
is chosen to be26.81%. These effective medium values
are expected to be appropriate since the transverse phonon

wavelength exceed the diameter of the spheres by a factor
of 8.8, which is in the long-wavelength regime.

As expected, Fig. 2 shows that the effective permittiv-
ity of the collection is resonant at approximately6.75 THz.
where the material permittivity is around−2. The effective
permeability in Fig. 3 shows a resonance around3.53 THz,
which is below the transverse phonon frequency and hap-
pens to be where the material permittivity becomes quite
large. Note that the resonance in both effective parameters
is strong enough that they become negative over a range of
frequencies above the resonance.

3.2 Multiple scattering results

Since the effective permeability and permittivity that have
been found are within the long-wavelength limit, the actual
lattice structure, if any, should have little impact on the ef-
fective dispersion. Even so, it is desirable to verify the the-
ory with a full multiple scattering approach. The Clausius-
Mossotti relation is supposed to account for dipole-dipole
interations, and although it can be derived by assuming a
simple cubic lattice of dipoles, it should be appropriate for
other lattices also [9]. In addition, as the free-space wave-
length approaches the length scale of the lattice, periodic
scattering effects become important.

A photonic crystal band structure calculation was
needed in order to verify the theory, as well as to determine
how these periodic effects deviate from the calculated ef-
fective parameters. To this end, software from Ref. [12]
was modified and used. This software can calculate the
complex band structure and transmission through a com-
posite of arbitrary layers of planes of spheres as well as
homogeneous layers. It takes the full multiple scattering
approach into account, and the only approximations used
are in the angular momentum cutoff in the spherical scat-
tering coefficients and the number of reciprocal lattice vec-
tors taken in each of the planes of spheres. This method is
a frequency-domain solver which easily accommodates the
material dispersion of the polaritonic spheres.

A simple cubic lattice with lattice constanta = 10µm
of LiTaO3 spheres of radiusr0 = 0.4a was simulated.
These values match the filling fraction of26.81% used ear-
lier. The Bloch wavevector was oriented along theΓX di-
rection. The results are shown as dots in Fig. 4. The solid
line compares the effective photon dispersion from the re-
lation

ω2 =
c2k2

εeff
r (ω)µeff

r (ω)
, (13)

in the long-wavelength regime, whereµeff
r (ω) andεeff

r (ω)
were obtained from (9) and (10). Indeed, the curves match
very closely for smallω and smallkz. Only near the Bril-
louin zone edge (kza/2π = 0.5) do the curves begin to dif-
fer. This indicates that it is appropriate to define the effec-
tive permittivity and permeability as derived in Section 2.
Note that the effective photon dispersion need not be con-
fined to the first Brillouin zone, as shown in Fig. 4 around
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Figure 4. Band structure for a simple cubic lattice of
LiTaO3 spheres. The lattice constant isa = 10µm, the
radius of the spheres isr0 = 0.4a. The Bloch wavevector
is in theΓX direction.
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Figure 5. Extinction for a simple cubic lattice of LiTaO3

spheres. The lattice constant isa = 10µm, the radius of
the spheres isr0 = 0.4a. The Bloch wavevector is in the
ΓX direction.

ωa/2πc = 0.35. The first “kink” aroundωa/2πc = 0.12
in the band structure is due to the permeability resonance,
and the second feature aroundωa/2πc = 0.23 is due to the
permittivity resonance. The first Bragg resonance occurs
aroundωa/2πc = 0.35.

The two regions which result from the effective res-
onances are seen to have negative group velocity, since
vg = ∂ω/∂kz < 0 at resonance. This is physically ac-
ceptable, since there is also notable extinction in those
frequency ranges [13, 14]. This extinction is shown in
Fig. 5 as the imaginary part of the Bloch wavevector. Both
regions of negative group velocity are within noticeable
bandgaps.

4 Conclusion

It has been shown that the effective permittivity and per-
meability can be derived for a collection of small spheres
of arbitrary material permittivity. The results for sphereof
LiTaO3 have been presented. The theory has been verified
by a comparison of the effective photon dispersion to the
band structure of an equivalent sample with a simple cubic
lattice.

The results presented have shown that not only can ef-
fective media with substantial paramagnetism, or diamag-
netism, be created for the infrared regime, but that these
new materials can even have a negative permeability. This
simple method might also be used as one of the components
in a composite with a negative index of refraction.

Future work will include determining the effect of the
lattice structure on the effective media values, and the ex-
tent to which these values are isotropic. Work is under-
way to determine how these results may be used to make a
simple composite with a negative index of refraction in the
infrared regime.
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