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ABSTRACT

In this paper we consider the effective electric and magnetic properties of a three-dimensional collection of non-
magnetic spheres. Polaritonic materials are used, so that the Mie resonances of the spheres are excited in the
long-wavelength regime of the surrounding medium. We consider a simple cubic lattice based on LiTaO3 and find
that it is possible to engineer a fundamental resonant magnetic response. The effective media parameters derived
by this approach are isotropic, and closely match those obtained by band structure calculations. Frequency
ranges with either negative permittivity or negative permeability are found. Within these ranges a negative
group velocity is observed. Coated spheres with a negative index of refraction are also presented.

Keywords: Metamaterials, Mie scattering, magnetism, negative permeability, negative permittivity, negative
index of refraction, negative group velocity

1. INTRODUCTION

The research into negative index of refraction metamaterials has progressed rapidly within the past few years.
The investigations of artificial materials with either a negative permittivity at frequencies below the ultraviolet,1

or with a magnetic response or negative permeability above the megahertz range,2 stimulated interest in the
possibility that materials with a negative refraction could be synthesized. The combination of the two aforemen-
tioned types of metamaterials was subsequently found to have a negative index of refraction.3 The first potential
application, the perfect lens,4 promised that a planar slab of such material could focus both the propagating
and evanescent components of an object and achieve sub-wavelength imaging, and great excitement spawned
this new field of research. Since then, a negative index has also been demonstrated in loaded transmission line
media,5 and a related effect has been found to occur in photonic crystals.6, 7 Experimental results have been
reported in the GHz range for Snell’s law.8

The bulk of the investigations in metamaterials have been limited to the microwave domain, since there has
been considerable difficulty in pushing the results to infrared and optical frequencies due to the need for a strong
magnetic response at these frequencies. Even though the structures used can be scaled down in principle, the
intricate features of the materials which provide the magnetic response, such as the split-ring resonators,2 are
not simple to fabricate, and they are made of metals which are lossy at infrared frequencies. In addition, the
split-ring resonators are inherently anisotropic, and a complex arrangement of them would be needed to make
an isotropic composite. We propose an alternate structure which can provide a negative permeability and also
a negative permittivity.

On the other hand, photonic crystal designs6, 7 may be simpler structures, but it is the Bragg scattereing
in high-order bands, and not the long-wavelength effective media values, which causes the negative refraction
effect. This leads to a number of practical difficulties with the photonic crystals such as anisotropy, mode coupling
mismatches, and high-order diffraction.7 In addition, the fact that the wavelength is on the order the lattice
constant means that these PCs are limited in their use in device miniaturization. Furthermore, the transmission
line media are also unsuitable at the infrared frequencies due to their lumped components or intricate printed
loading elements.
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There have been reports on structures with a negative effective permeability, which could replace the split-
ring resonantors. It has been reported10 that a two-dimensional array of ferroelectric rods can have a negative
effective permeability in the GHz range when the magnetic field is polarized along the axes of the rods. The
rods, composed of materials with a large dielectric constant, act as leaky resonant cavities in the long-wavelength
limit, with the displacement currents circulating around each rod. These displacement currents are equivalent
to magnetic dipoles, and the resulting strong resonant behaviour was then averaged to find a negative effective
permeability. It was subsequently shown that polaritonic rods can also be used to extend this concept to the
infrared in two dimensions.11

Here we report that a three-dimensional collection of polaritonic spheres can have a negative effective per-
meability in the infrared.12 In addition, this effective permeability is found to be isotropic for modest filling
fractions. The effective electromagnetic constants are derived by a simple and rigorous method. The effective
permeability and permittivity are obtained in the long-wavelength limit, which only depend on the dielectric
permittivity of the constituent spheres and their volume filling fraction. Both the effective permittivity and
permeability can be negative, although not at the same frequency. The effective medium theory and the isotropy
of the composite are verified by a numerical scattering matrix method. Finally, scattering by coated spheres is
shown to result in a composite with a negative index of refraction.

2. EFFECTIVE MEDIUM APPROACH

The scattering problem of a single dielectric sphere is now considered. The scattered field is compared to the
standard form of dipole radiation, and the dipole moments are derived. The effective polarizabilities are then
used with the Clausius-Mossotti relation to find the effective electromagnetic parameters. Since the permeability
is of particular interest, the derivation follows the magnetic fields, and the dual relations hold for the electric
fields.

A plane wave with wavevector k0 = ωẑ/c and magnetic field Hi = H0 exp(ik0z)ŷ is incident on a single
isolated sphere of radius r0 and relative permittivity εr = n2. The constants of proportionality between the
2m-multipole terms of the magnetic field scattered by the sphere and those of the incident field are

bm =
ψm(nx)ψ′

m(x) − nψm(x)ψ′
m(nx)

ψm(nx)ξ′m(x) − nξm(x)ψ′
m(nx)

, (1)

and the 2m-pole coefficients of the scattered electric field are

am =
nψm(nx)ψ′

m(x) − ψm(x)ψ′
m(nx)

nψm(nx)ξ′m(x) − ξm(x)ψ′
m(nx)

. (2)

Here x = k0r0, and ψm(z) = zjm(z) and ξm(z) = zh1
m(z) are the Riccati-Bessel functions, which are related to

the spherical Bessel and spherical Hankel functions.13 The primes indicate differentiation with respect to the
argument.

The dipole scattered fields, i.e. those with m = 1, are of interest here. Only the b1 coefficient, which is the
strength of the magnetic dipole response, is needed when considering the effective permeability, while only the
a1 term is needed to find the effective permittivity.

The forms of am and bm show that they can have a resonant response. Therefore, consider a situation where
the frequency of the incident wave is such that only one of these terms is dominant; e.g. b1 is near resonance.
The dominant contribution to the scattered magnetic field is then due to the single term,

Hff =
3i

2
H0b1

eik0r

k0r

[(

ŷ · θ̂
)

θ̂ + (ŷ · ϕ̂) ϕ̂
]

= −3i

2
H0b1

eik0r

k0r
r̂ × (r̂ × ŷ) , (3)



in the far-field.13 If the free-space wavelength is much larger than the diameter of the sphere, the sphere may be
replaced conceptually by a radiating magnetic dipole of moment m. The scattered field may then be compared
to the standard expression for far-field dipole radiation,14

Hff = − k3
0

4π

eik0r

k0r
r̂ × (r̂ × m) . (4)

The equivalent magnetic dipole moment of a single isolated dielectric sphere may be then found by equating (3)
and (4), in terms of its b1 scattering coefficient,15

m = 6πiH0b1ẑ/k
3
0. (5)

The effective magnetic polarizability αm can then be found, where m = αmHi, which yields

αm = 6πib1/k
3
0. (6)

Therefore, the dielectric sphere can be removed and replaced by an ideal dipole of effective moment m and
effective polarizability αm.

In order to describe the response of a bulk material (a large collection of spheres), the effective permeability
µeff

r is needed. This can be found by averaging the effective dipole fields over a large region in the long-wavelength
limit. The results, known as the Clausius-Mossotti equation,14 or the Lorentz-Lorenz formula,16 can be used
to relate the bulk effective permeability to the single sphere polarizability,

αm =
3

N

(

µeff
r − 1

µeff
r + 2

)

, (7)

where N is the sphere volume density. The filling fraction f of the composite is f = 4πNr3
0/3, and should be

kept to modest values. The effective permeability is then

µeff
r =

k3
0 + 4πiNb1
k3
0 − 2πiNb1

. (8)

Similarly, the effective permittivity εeffr can be related to the scattered electric dipole term a1,

εeffr =
k3
0 + 4πiNa1

k3
0 − 2πiNa1

. (9)

These two final expressions determine the response of the bulk composite, and depend only on the size, density,
and composition of the spheres.

3. NEGATIVE PERMEABILITY

The magnetic dipole response of a sphere is usually weak. In addition, even though the coefficient b1 resonates
due to the spherical Bessel functions, these resonances are often at frequencies beyond the long-wavelength limit
and thus are not valid in the bulk µeff

r . This applies in most circumstances, when the materials that comprise
the sphere are dielectrics or metals. However, if the material dielectric constant were very large, the magnetic
response coefficient b1 could be driven into resonance at very low frequencies, within the long-wavelength limit.
Some classes of materials that can provide the large dielectric constant are ferroelectric or polaritonic materials.
These materials were considered in the reports of the related magnetic resonances in two-dimensional arrays of
dielectric cylinders.10, 11 Whereas ferroelectrics may be more useful in the microwave range, the lattice resonance
(reststrahl region) in polaritonic crystals can be exploited at infrared and optical frequencies, and is considered
in this paper.

The relative permittivity of polaritonic materials follows the relation

εr(ω) = ε(∞)

(

1 +
ω2

L − ω2
T

ω2
T − ω2 − iωγ

)

, (10)
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Figure 1. The effective relative (a) permeability and (b) permittivity of a collection of LiTaO3 spheres. The radius of
the spheres is 4 µm. The filling fraction is 26.81%.

where ε(∞) is the high-frequency limit of the permittivity, ωT is the transverse optical phonon frequency, ωL is
the longitudinal optical phonon frequency, and γ is the damping coefficient.17 These parameters are related by
the Lyddane-Sachs-Teller relation ω2

L/ω
2
T = ε(0)/ε(∞), where ε(0) is the static permittivity. We consider spheres

made of LiTaO3, and use the following parameters18: ε(0) = 41.4, ε(∞) = 13.4, ωT = 2π × 4.25 × 1012 rad/s,
ωL = 2π × 7.46 × 1012 rad/s, and γ = 2π × 1.5 × 1011 rad/s.

We have chosen LiTaO3 because of its large static permittivity ε(0). The permittivity increases with frequency
up to the transverse phonon frequency ωT , where it is extremely large. It is just below this material resonance
that the permittivity becomes sufficiently large to drive the magnetic dipole into resonance. That is, the large
dielectric constant, and not necessarily the material resonance, is the desired attribute of polaritonic materials;
the larger the permittivity, the easier it is to create a negative effective permeability.

We consider a collection of LiTaO3 spheres, with filling fraction 26.81% and radii 4µm. The effective perme-
ability is shown in Fig. 1(a), and the effective permittivity is shown in Fig. 1(b). The frequency ranges shown
are within the long-wavelength limit; the ratio of the free-space wavelength to the diameter of the sphere at the
center of the permeability resonance is 10.6.

The resonance in µeff
r shown in Fig. 1(a) is centered at 3.53 THz, which is slightly below the transverse phonon

frequency (ωT = 4.25 THz), but nevertheless the material permittivity is quite large. The values of µeff
r , which

are otherwise assumed to be unity at optical frequencies, vary substantially from that. A negative permeability
is shown above the resonance. There is not much structure in εeffr , shown in Fig. 1(b), other than a very weak
resonance at 3.9 THz.

Finally, we note that the effective medium approach presented here differs from the method commonly used
on other metamaterials.10 In the other method, the effective index and effective impedance are transformed into
the effective permeability and permittivity. The effective index is found from band structure calculations. The
effective impedance is derived from the equivalence in reflection from a slab of some thickness of the metamaterial,
and the same length of a homogeneous slab. The slab thickness is arbitrary, and the resulting effective media
values are implicitly dependent on it. A number of reports that use this other method find negative imaginary
values of either the permittivity or permeability,10, 11, 19 which indicate that the passive structures have gain,
which is unsettling. On the other hand, the method presented here is a first-principles approach, and as shown
in Fig. 1, the imaginary parts are always non-negative, indicating attenuation only, as should be expected.
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Figure 2. A unit cell of a simple cubic crystal, indicating the components of the scattered waves. This figure assumes
propagation along the ΓX direction.

4. BAND STRUCTURE AND ISOTROPY

The effective values presented in Sect. 3 were calculated only knowing the density of the collection of spheres.
The actual arrangement of the spheres, particularly a periodic lattice arrangement, should make little difference
on the band structure, since the wavelengths are much larger than the spheres or their spacing. Therefore, the
effective media values are expected to be isotropic. A full numerical calculation, which takes into account the
multiple scattering between the spheres in a lattice, is desired to verify that the dispersion is the same in all
directions. This would also include the higher multipole contributions. Therefore, we will compare the effective
medium results with photonic crystal band structure calculations. In addition, this will verify the accuracy of
the calculated effective medium values.

We used modifications of the code MULTEM2 to perform the band structure calculations.20 A three-
dimensional array of spheres is partitioned into a stack of two-dimensional planes of spheres, perpendicular to
the direction of wave propagation. A scattering matrix approach relates the fields on the two ends of a unit cell
along the direction of propagation,

A+
2 = T21 · A+

1 + R22 · A−

2

A−

1 = R11 · A+
1 + T12 · A−

2 , (11)

where A±

i are column vectors representing the components of the fields, as defined in Fig. 2. The Tij and Rij

are transmission and reflection matrices from the j-th to i-th plane, and include all of the information regarding
the lattice, sphere size, sphere and host dielectrics, frequency, and transverse wavevector. The Bloch condition is
imposed along the direction of propagation, so that A±

2 = exp(ika)A±

1 , where k is the longitudinal component
of the Bloch wavevector, and a is the unit cell size. The code then solves the eigenvalue problem

eika

[

I 0

R11 T12

] [

A+
1

A−

2

]

=

[

T21 R22

0 I

] [

A+
1

A−

2

]

, (12)

where I is the identity matrix. The only approximations in this code are in the angular momentum cutoff in
the spherical scattering coefficients, and the number of reciprocal lattice vectors taken in each two-dimensional
plane of spheres. The code was modified from the published version20 to accommodate polaritonic materials.

A simple cubic lattice is chosen to verify the effective medium approach and isotropy. The lattice constant
is a = 10µm, and the LiTaO3 spheres have a radius of r0 = 0.4a. This is a filling fraction of 26.81% (using
N = 1/a3 for a simple cubic lattice), which corresponds to the values used in the effective medium approach in
Sect. 3. The band structures calculated with the scattering matrix code for the Bloch wavevector along the ΓX,
ΓM , and ΓR directions are shown in Fig. 3(a). These are compared with the effective photon dispersion, which
is given by the relation

c2k2
0 = ω2εeffr (ω)µeff

r (ω), (13)

in the long-wavelength limit, where µeff
r (ω) and εeffr (ω) were obtained from (8) and (9). All of the curves match

closely, verifying both the effective medium approach as well as the isotropic response of the composite. Note
that the ΓM direction should have two non-degenerate bands, which can be distinguished in Fig. 3(a), although
for one of these bands the code did not converge easily at the center of the resonance. The long-wavelength
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Figure 3. The eigenfrequencies of a simple cubic lattice of LiTaO3 spheres, as a function of the (a) real part (band
structure), and (b) imaginary part of the Bloch wavevector. The lattice constant is a = 10 µm and the radius of the
spheres is r0 = 0.4a.

approximation begins to break down at frequencies slightly beyond the range of the figure, most noticably near
the first Bragg gap (around ka/2π = 0.5 and ωa/2πc = 0.35), which is a feature that cannot be predicted by the
effective medium approach, and is beyond its limits of validity.

The most interesting feature of the band structure is the “kink” centered at ωa/2πc = 0.118. This is due to
the resonance in the effective permeability. This is an anomalous dispersion region that has a negative group
velocity, vg = ∂ω/∂k < 0. A negative group velocity means that the group delay of a pulse traveling through
the structure is negative. That is, if a pulse in this frequency range were applied to a slab of this material, the
peak output would precede the input peak. This does not violate causality, so long as the passive media displays
attenuation in the anomalous dispersion region.5, 21 As such, the attenuation is proportional to the imaginary
part of the Bloch wavevector, which is shown in Fig. 3(b). This manifests itself as a pseudogap, meaning that
the phase varies throughout the width of the gap, in contrast to the constant phase in the Bragg gap.

5. NEGATIVE PERMITTIVITY

Now we would like to discuss how to design significant values of εeffr , particularly negative values. The effective
permittivity was derived in Eq. (9). As such, resonances of a1 are manifested as bulk resonances in εeffr . However,
the same concept of using large-valued dielectric materials to drive these resonances does not apply as simply
as before, since the fundamental resonance of a1 is above that of b1. Since these resonances must be kept in the
range of λ0/a & 10, it is more difficult to use these bulk resonances to synthesize a negative permittivity.

There exists another way to induce a resonance in εeffr . Relaxing the condition that the sphere material must
be a large dielectric, the electric scattering coefficient can be approximated as13

a1 = − i2x
3

3

εr − 1

εr + 2
, |√εr|x¿ 1. (14)

Therefore, an isolated sphere will have a resonance in a1 if εr = −2. Using Eq. (14) in Eq. (9), we find that

εr =
f + 2

f − 1
(15)

is an approximate condition for the material permittivity of the sphere that induces a resonance in εeffr . The
required material permittivity will always be negative, and grows more negative with increasing filling fraction.
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Figure 4. The effective permittivity of a simple cubic arrangement of spheres. The lattice constant is a = 10 µm, the
sphere radius is r0 = 0.47a, and the spheres are made of a Drude material with ωp = 25.8 THz and γ = ωp/100.

As such, this is a surface resonance, and the radial dependence of the field decays (with modified spherical Bessel
functional form) into the sphere.

Now consider spheres made of a material represented by a Drude model,

ε(ω) = 1 −
ω2

p

ω2 + iωγ
, (16)

with plasma frequency ωp and damping term γ. This model describes metals and semiconductors, and (15)
indicates that we are concerned with the small negative values of permittivity that are obtained at frequencies
just below ωp. Since we are considering frequencies in the THz range, metals are excluded, due to their typical
ultraviolet plasma frequencies. We therefore consider semiconductor materials, and use parameters of ωp =
25.8 THz and γ = ωp/100, which could be achieved with proper doping. The radius of each sphere is r0 = 0.47a.
Using (15) and (16), the resonance in εeffr is expected to be at 1.78 THz, where the sphere permittivity is
ε = −4.31+ i0.13. The calculated εeffr is shown in Fig. 4. The values for µeff

r do not vary significantly from unity,
and are not shown.

6. NEGATIVE INDEX OF REFRACTION

A negative index of refraction requires both a negative permeability and permittivity at the same frequency.
Section 3 described how to design a negative permeability, and Sect. 5 described how to design a negative
permittivity. Unfortunately, one cannot design both to be negative in the same frequency range with the present
model. Nevertheless, the same concepts can be applied to more complex structures. One method, reported very
recently,22 uses two interpenetrating arrays of spheres; one set is tuned to have µeff

r < 0, and the other is tuned
to have εeffr < 0.

Here we report another possibility: using coated spheres. In particular, we choose to tune the core to have
µeff

r < 0, and the shell to have εeffr < 0. Consider now a core, of radius r1 and index n1 = ε21, coated by a shell
of radius r2 (measured from the same origin) and index n2 = ε22. Then the scattering coefficients, in place of (1)
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Figure 5. The (a) effective permeability and (b) effective permittivity of a simple cubic lattice of coated spheres. The
lattice constant is a = 10 µm. The cores are LiTaO3 spheres of radius r1 = 0.4a, and the shells are a Drude material with
r2 = 0.47a, ωp = 25.8 THz and γ = ωp/100.

and (2) are,13

am =
ψm(y) [ψ′

m(n2y) −Amχ
′
m(n2y)] − n2ψ

′
m(y) [ψm(n2y) −Amχm(n2y)]

ξm(y) [ψ′
m(n2y) −Amχ′

m(n2y)] − n2ξ′m(y) [ψm(n2y) −Amχm(n2y)]
, (17)

bm =
n2ψm(y) [ψ′

m(n2y) −Bmχ
′
m(n2y)] − ψ′

m(y) [ψm(n2y) −Bmχm(n2y)]

n2ξm(y) [ψ′
m(n2y) −Bmχ′

m(n2y)] − ξ′m(y) [ψm(n2y) −Bmχm(n2y)]
, (18)

Am =
n2ψm(n2x)ψ

′
m(n1x) − n1ψ

′
m(n2x)ψm(n1x)

n2χm(n2x)ψ′
m(n1x) − n1χ′

m(n2x)ψm(n1x)
, (19)

Bm =
n2ψm(n1x)ψ

′
m(n2x) − n1ψm(n2x)ψ

′
m(n1x)

n2χ′
m(n2x)ψm(n1x) − n1ψ′

m(n1x)χm(n2x)
, (20)

where x = kr1, y = kr2, χm(z) = −zym(z), and ym(z) is the spherical Bessel function of the second kind. To
find the effective media values for coated spheres, one simply uses these equations in (8) and (9).

Our heuristic for tailoring µeff
r < 0 was to use fairly large spheres with a large material permittivity. We

choose to use the example design in Sect. 3 again as the core. This will provide the necessary µeff
r < 0 and we

shall choose a shell that will not interact in terms of its magnetic response. The design of the shell is not simple,
since both the core and the shell will contribute to the electric response. Nevertheless, by using the Drude sphere
presented in Sect. 5, and carving out the center volume equal to the volume of the LiTaO3 core, a negative index
design is achieved. The resulting effective media values are shown in Fig. 5. Note that the regions of µeff

r < 0
and εeffr < 0 overlap in frequency. The permittivity resonance has shifted up in frequency because the effective
filling fraction of the Drude shell (surface wave evanescent region) has been lowered.

Finally, the effective index of these coated spheres, calculated with neff =
√

µeff
r

√

εeffr , in shown in Fig. 6(a),
and the band structure, calculated from (13), is shown in Fig. 6(b). There is a band of frequencies where the
real part of the index is negative. The imaginary part of the index, which is proportional to attenuation, has
moderate values in this range, and is primarily a consequence of the attenuation of the effective permeability
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Figure 6. The (a) effective index and (b) band structure of a simple cubic lattice of coated spheres. The structure is the
same as in Fig. 5.

resonance. Both resonances can be seen in the band structure, and the real part of the curve crosses into a range
where k < 0. The negative index region can be found in the band structure where k < 0 and dω/dk > 0, i.e.

vp < 0 and vg > 0, which are the characteristics of negative index and backward wave behaviour.

7. SUMMARY

A first-principles approach for calculating the effective permeability and permittivity of a collection of dielectric
spheres has been presented. It has been shown that a collection of polaritonic spheres can have an effective
permeability that differs substantially from unity at infrared frequencies, and can even be negative. The three-
dimensional isotropic magnetic response is controlled by the size, density, and dielectric properties of the spheres.
This composite is a simple alternative to the use of split ring resonator in optical metamaterials. Furthermore,
designs with a negative effective permittivity and negative index of refraction were also reported. This work
shows that simple spheres can be used to make metamaterials in the optical domain.

This work was supported by the Natural Sciences and Engineering Research Council of Canada under Grant
No. 249531-02, and in part by Photonic Research Ontario, Funded Research No. 72022792.
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