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ABSTRACT
The presence of superluminal (in excess of the speed of
light in vacuum) or negative group velocities in passive or
active Lorentzian medium, one-dimensional photonic crys-
tal (1DPC), undersized waveguide, and other structures has
been theoretically predicted and experimentally observed.
While due to the temporal or structural dispersions the
group velocity in these media is abnormal, it has been ar-
gued that such behavior is not contradictory to the require-
ments of relativistic causality (Einstein causality), since the
earliest field oscillations known as the precursors or fore-
runner must and will obey Einstein causality. In this paper,
for the first time, by using finite difference time domain
(FDTD) technique in conjunction with the joint time fre-
quency analysis (JTFA) we present the dynamical evolution
of these earliest field oscillations; clearly indicating that de-
spite the observed abnormal group velocities the precursor
fields are indeed subluminal, and as such, must be associ-
ated with the arrival of “genuine information”. Moreover,
this work presents the combined FDTD and JTFA as a vi-
able tool in studying the dynamical evolution of the tran-
sient and steady-state pulse propagation in dispersive me-
dia.
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1 Introduction

The origin of the classical theory of pulse propagation
in linear, homogeneous, isotropic, causally dispersive
medium is the classical work of Sommerfeld and Brillouin
[1]. In a causally dispersive medium the signal arrival ap-
pears in the dynamical field evolution as an increase in the
field amplitude from that of the precursor fields to that of
the steady-state signal. Therefore, correct description of
the signal arrival is closely related to the proper analysis
of the precursor fields and their role in the field evolution.
Sommerfeld and Brillouin classification of different wave
velocities into terms such as phase, group, energy, and pre-
cursors velocities continues to be the standard description
today. More recently, it has been shown that under some
circumstances all of the above velocities, except for the

precursor’s velocity, can become abnormal (superluminal
or negative) [2],[3]. In particular, superluminal or nega-
tive group velocities at microwave frequencies [4]-[6], at
optical frequencies [7], and in the single-photon limit [8]
have been experimentally observed. In addition to Som-
merfeld and Brillouin, Oughstun and coworkers have ex-
tensively studied the precursor fields in Lorentzian media
by refining and generalizing the previous results [9]. Sur-
prisingly, there has been little or no work on the precursor
fields in dispersive media other than Lorentzian. For ex-
ample, while the presence of superluminal group velocity
in 1DPC has been theoretically predicted and experimen-
tally verified, there has been few attempts in studying the
forerunner propagation in these structures. In this paper
the time and frequency evolution of a modulated Gaussian
pulse propagating inside a 1DPC is studied. The FDTD
method [10] is used to calculate the time evolution of the
pulse and JTFA [11] is used as a post processing technique
to calculate the frequency evolution of the signal including
the transient response (the precursor fields).

2 Analysis of One Dimensional Photonic
Crystal (1DPC)

As mentioned earlier, there have been few efforts to
study the precursors in dispersive structures other than
Lorentzian medium. This is mostly due to the complex-
ity of the asymptotic techniques. Based on the results from
our previous work [12] the combination of FDTD and JTFA
can be used as a robust and accurate tool to study the pre-
cursors, or in general the transient response, of the propa-
gating field in dispersive media. In this section this com-
bination has been used to study the transient response of
the wave propagation in a 1DPC. The dispersion in the
Lorentzian medium originates from the frequency depen-
dent response of the medium dipoles, but it’s the inhomo-
geneous structure of the 1DPC that makes it a dispersive
structure. Superluminal group velocity is a consequence
of dispersion in 1DPC and it has been experimentally ver-
ified in several experiments. In the following, we have an-
alyzed the superluminal propagation of a modulated Gaus-
sian pulse through a 1DPC. The geometry of the 1DPC is
based on the physical experiment in microwave domain by
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Figure 1. Pulse advancement in 5slab 1DPC.

Mojahedi et. al. [4]. It consists of five dielectric slabs
with the width of1.27cm and index of refraction1.66. The
slabs are separated by4.1cm air-gaps. The structure is ex-
cited with a modulated Gaussian pulse of temporal width
5.5ns (FWHM) (Ts = 3.11 × 10−9s, t0 = 3 × Tss) and
carrier frequencyωc = 9.6GHz. The Gaussian pulse is
zero fort < 0 and it is defined as

S(t) = exp[−(t − t0/Ts)
2]sin(ωct) (1)

for t > 0. The center frequency of the modulated Gaus-
sian excitation is inside the bandgap of the 1DPC and hence
the contributions of the frequency components outside the
bandgap are negligible. Figures 1(a) and 1(b) show a Gaus-
sian pulse propagated through a 1DPC and through vac-
uum of the same physical length as the 1DPC, respectively.
From the figure it is evident that the peak in Fig.1(a) arrives
at the output479ps sooner than the vacuum pulse, imply-
ing a group velocity ofvg = 2.71c for the pulse traveling
in the 1DPC.
The excitations in these simulations have a very smooth
turn on (the amplitude of the front ise−9, whereas the peak
amplitude is unity). Figure 2 shows the Wigner-Ville JTFA
of the pulse propagated through the 1DPC which has the
same structure as the pulse propagated in the free space.
It is observed that the frequency components are concen-
trated around the center frequency of the pulse, starting
with lower frequency components, evolving to the highest
frequency components, and back to the lower ones at the
end.

The interesting question is that whether or not these
abnormal behaviors are consistent with the requirements
of special relativity, which demands no information to be
transmitted faster than the speed of light in vacuum. Mo-
jahediet.al. [14] have argued that if information carrying
signal is to be presented as an analytical function extend-
ing in time from−∞ to +∞, then by definition the sig-
nal posses infinite number of derivatives and the future and
early behavior of the pulse can be predicted by using Tay-
lor expansion about any point in time. Therefore, a signal

Figure 2. Wigner-Ville JTFA of the output Gaussian pulse
in 5slab 1DPC.

without any turn-on point does not convey “genuine” in-
formation. They also argue that a signal that conveys in-
formation, and is physically realizable, is a causal signal
that has a beginning (“front”) in time and space. Conse-
quently, in a noiseless channel (as we have considered in
all the simulations) the earliest time that the future valueof
the information carrying signal can be predicted ist = 0+,
sincet = 0 by definition is a point of non-analyticity for
which the Taylor expansion does not exist. Therefore, the
genuine information regarding the correct value of a causal
signal is contained within the time interval beginning with
t = 0 (the “front”) and times immediately following it.

Previous simulation shows the superluminal group
velocity in the 1DPC for a pulse with a very smooth front,
therefore, the effect of the front is not observed in the out-
put. To observe the evolution of the front we have intro-
duced an excitation that enforces the pulse front explicitly.
In this excitation, a second order non-analyticity has been
introduced in the beginning of a Gaussian pulse similar to
the pulse used previously. The excitation is zero att = 0,
and the amplitude of pulse increases smoothly with time
(the envelope is a second order polynomial). At the point
the amplitude of the pulse reachese−2.25 the second or-
der non-analyticity is introduced by matching the second
order polynomial to a Gaussian envelope with parameters
(Ts = 3.11 × 10−9s, t0 = 1.5 × Tss). Figure 3 shows this
excitation and its frequency distribution as compared to the
frequency distribution of the excitation with a smooth turn-
on used in the first simulation. Comparing the frequency
distributions of the two pulses shows that introducing the
non-analytic point adds low and high frequency compo-
nents with small amplitudes to the frequency distribution
of the pulse with smooth turn-on. We may note that the
frequency distribution of the pulse with enforced front is
still narrower than the stop-band of the 1DPC (which is
1.4GHz around the center frequency 9.5GHz); therefore,
the steady-state dispersion mechanism is similar for both
excitations. The only difference between the output pulse
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Figure 3. (a) Modulated Gaussian excitation with enforced
front (b) frequency distribution of the Gaussian excita-
tions with smooth front (source1) and with enforced front
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Figure 4. WVD JTFA of the output Gaussian pulse in 5slab
1DPC.

in the 5 slab 1DPC due to the excitation with an enforced
front and the output pulse in previous simulation with a
smooth front excitation is the oscillations (“precursors”) in
the early part of the pulse. Figure 4 shows the pulse prop-
agated through a 1DPC with 5 slabs and its Wigner-Ville
JTFA. The JTFA shows that these precursors contain high
and low frequencies that appear at the same time in the be-
ginning of the pulse and are not present in the remaining
part of the pulse. Simulations that are not presented here
show that similar behavior is observed when a Lorentzian
medium is excited away from the resonance with similar
excitation, where low and high frequencies due to the dis-
continuity in the beginning of the pulse appear concurrently
at the output.

The interesting observation is that although group ve-
locity is superluminal there is a subluminal delay in the ap-
pearance of the front. Figure 5 shows that the peak of the
pulse that has traveled through the 1DPC appears in the out-
put sooner than the peak of the pulse that has traveled the
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Figure 5. Normalized Gaussian pulse with enforced front
at the output of the 1DPC compared to the same pulse that
has traveled the same length in free space.

same length in the free space, but as it can be clearly seen
in the inset the early oscillations of the free space pulse ap-
pears sooner than the early oscillations of the pulse that has
traveled through the 1DPC. In other words, the front veloc-
ity for the 1DPC pulse is subluminal, and to the extent that
information should be associated with the points of non-
analyticity, these earliest oscillations travel subluminally.

To further study the propagation of the front inside
an inhomogeneous structure, in another series of numerical
experiments, a 1DPC with the same structure as the previ-
ous simulations but with different number of slabs has been
studied. While, increasing the number of slabs slightly
changes the dispersion characteristics of the structure, it
will cause a stronger attenuation of the signal. Therefore,
by increasing the number of slabs we can study the attenua-
tion rates of different portions of the pulse. Figure 6 shows
the output pulse for 1DPCs with different number of slabs.
While adding more slabs increases the attenuation, it can
also be seen from the figure that the attenuation rate is not
the same for different portions of the pulse. As the num-
ber of slabs increases the precursors are separated from the
remaining part of the pulse. In the 5-slab 1DPC the peak
of the precursors is lower than the peak of the main pulse,
but in the case of 9-slab 1DPC the amplitude of the precur-
sors is higher than the main part of the pulse. This in effect
shows that the decay rate for the precursors is less than the
decay rate for the main pulse.

Figure 7 compares the energy of the precursor field
and the main part of the signal calculated for 1DPC with
different number of slabs. The energy is defined as

E =

∫ t2

t1

|f(t)|
2dt (2)

wheret1 andt2 are the beginning and the end of each por-
tion of the pulse. The beginning of the precursors is the
time that pulse appears in the output and the end is defined
as the time that the absolute amplitude of the pulse is min-
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Figure 6. Propagation of the Gaussian pulse inside the
1DPC with different number of slabs.

imum between the precursors and the main signal (it is not
necessarily zero). The main signal starts at the end of the
precursors and it end as the signal disappears in the out-
put sampling point. It can be seen from Fig. 7 that the
energy of the main signal is almost 50 times the energy of
the precursors for the 1DPC with 5 slabs. As the number
of slabs increases the energy of the main signal decreases
drastically but the rate of attenuation for the precursors is
lower. For example, in the case of 1DPC with 9 slabs the
energy of the main signal and precursors are comparable
(the energy of the main signal is 3 times the energy of the
precursors).

3 Conclusion

In this paper we have described the propagation of a mod-
ulated Gaussian pulse in a 1DPC. Time and frequency evo-
lution of the precursors and the fact that their propaga-
tion velocity is subluminal has been verified. Despite the
claim by the authors in reference [6], asserting that that
they have demonstrated superluminal information velocity
using (smooth) signals by means of under cutoff frequen-
cies and without generating further precursors; this does
not seem to be true in practice. In order to send a signal
some discontinuities have to be created that in turn gener-
ates new precursors and if the signal can not overtake its
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Figure 7. Energy of the precursor and the main part of the
pulse for different number of slabs.

precursors, then information can not be transmitted faster
than light, in spite of the fact that group velocity can be su-
perluminal. An interesting point in these simulations is that
the front of the pulse is subluminally delayed as it travels
through the structure. Therefore, although the group ve-
locity is superluminal the precursors, that are the genuine
carriers of information, are not. This work also presents the
combination of FDTD and JTFA as a tool that can be used
to study both transient and steady-state of the time and fre-
quency evolution of a pulse propagating inside a dispersive
medium.
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