Array Directivity

1 Broadside Array

For the case where $d \ll \lambda$, the normalized array factor is

$$
\begin{equation*}
(A F)_{n} \approx \frac{\sin \left(\frac{N}{2} k d \cos \theta\right)}{\frac{N}{2} k d \cos \theta} \tag{1}
\end{equation*}
$$

and the corresponding radiation intensity for an array of isotropic elements is

$$
\begin{equation*}
U(\theta)=\left[(A F)_{n}\right]^{2} . \tag{2}
\end{equation*}
$$

The average radiation intensity is

$$
\begin{equation*}
U_{0}=\frac{P_{\mathrm{rad}}}{4 \pi}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left[\frac{\sin \left(\frac{N}{2} k d \cos \theta\right)}{\frac{N}{2} k d \cos \theta}\right]^{2} \sin \theta d \theta . \tag{3}
\end{equation*}
$$

Employing the substitution

$$
\begin{align*}
Z & =\frac{N}{2} k d \cos \theta \tag{4a}\\
d Z & =-\frac{N}{2} k d \sin \theta d \theta \tag{4b}
\end{align*}
$$

we can write

$$
\begin{equation*}
U_{0}=\frac{1}{2} \cdot \frac{-2}{N k d} \int_{\frac{N k d}{2}}^{-\frac{N k d}{2}}\left[\frac{\sin Z}{Z}\right]^{2} d Z \approx \frac{1}{N k d} \int_{-\infty}^{\infty}\left[\frac{\sin Z}{Z}\right]^{2} d Z \tag{5}
\end{equation*}
$$

if $N k d$ is large (the array is long). In this case

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left[\frac{\sin Z}{Z}\right]^{2} d Z=\pi \tag{6}
\end{equation*}
$$

and

$$
\begin{gather*}
U_{0} \approx \frac{\pi}{N k d}, \tag{7}\\
D_{0}=\frac{U_{\max }}{U_{0}}=U_{0}^{-1}=\frac{N k d}{\pi}=2 N \frac{d}{\lambda} . \tag{8}
\end{gather*}
$$

2 Ordinary Endfire Array

Here we consider the case where $\theta_{0}=0^{\circ}$ or $\alpha=-k d$. The AF can then be written

$$
\begin{equation*}
(A F)_{n} \approx \frac{\sin \left[\frac{N}{2} k d(\cos \theta-1)\right]}{\frac{N}{2} k d(\cos \theta-1)} \tag{9}
\end{equation*}
$$

with corresponding average radiation intensity

$$
\begin{equation*}
U_{0}=\frac{1}{2} \int_{0}^{\pi}\left[\frac{\sin \left[\frac{N}{2} k d(\cos \theta-1)\right]}{\frac{N}{2} k d(\cos \theta-1)}\right]^{2} \sin \theta d \theta . \tag{10}
\end{equation*}
$$

To evaluate this, we use a similar substitution as for the broadside case,

$$
\begin{align*}
Z & =\frac{N}{2} k d(\cos \theta-1) \tag{11a}\\
d Z & =-\frac{N}{2} k d \sin \theta d \theta \tag{11b}
\end{align*}
$$

so that

$$
\begin{equation*}
U_{0}=-\frac{1}{N k d} \int_{0}^{-N k d}\left[\frac{\sin Z}{Z}\right]^{2} d Z \approx \frac{1}{N k d} \int_{0}^{\infty}\left[\frac{\sin Z}{Z}\right]^{2} d Z \tag{12}
\end{equation*}
$$

if $N k d$ is large. U_{0} is now half the value as it was for the broadside case, so that

$$
\begin{equation*}
D_{0} \approx 4 N \frac{d}{\lambda} . \tag{13}
\end{equation*}
$$

3 Hansen-Woodyard Endfire Array

The Handsen-Woodyard array was derived to have an average radiation intensity given by

$$
\begin{equation*}
U_{0}=\frac{1}{2}\left\{\frac{q(k-p)}{\sin [q(k-p)]}\right\}^{2} \int_{0}^{\pi}\left\{\frac{\sin [q(k \cos \theta-p)]}{q(k \cos \theta-p)}\right\}^{2} \sin \theta d \theta . \tag{14}
\end{equation*}
$$

This quantity is minimized when $q(k-p)=-1.46)$. Under this condition,

$$
\begin{equation*}
U_{0}=\frac{0.871}{N k d}, \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{0}=\frac{N k d}{0.871}=\frac{1}{0.554}\left(\frac{2 N k d}{\pi}\right)=1.805\left[4 N\left(\frac{d}{\lambda}\right)\right] \tag{16}
\end{equation*}
$$

which is 1.8 times the directivity of an ordinary endfire array.

