Field Region Separation

Having just considered the analysis of a half-wave dipole, let us consider for a moment a long wire antenna of length D. The vector potential for a line source directed along the z-axis is found using

$$
\begin{equation*}
\boldsymbol{A}=\mu \int \boldsymbol{I}_{e}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \frac{e^{-j k R}}{4 \pi R} d l^{\prime} \tag{1}
\end{equation*}
$$

For the infinitesimal and short dipole, we could approximate $R \approx r$. However, as the antenna becomes an appreciable fraction (or larger) of a wavelength, phase errors from the $\exp (\cdot)$ term become significant.

For a dipole on the z-axis,

$$
\begin{equation*}
R=\sqrt{x^{2}+y^{2}+\left(z-z^{\prime}\right)^{2}}=\sqrt{x^{2}+y^{2}+z^{2}-2 z^{\prime} z+z^{\prime 2}} . \tag{2}
\end{equation*}
$$

Expressing the field point in spherical coordinates,

$$
\begin{equation*}
R=\sqrt{r^{2}-2 r z^{\prime} \cos \theta+z^{\prime 2}}=r \sqrt{1+\frac{\left(-2 r z^{\prime} \cos \theta+z^{\prime 2}\right)}{r^{2}}} . \tag{3}
\end{equation*}
$$

Making use of the binomial theorem,

$$
\begin{equation*}
(1+x)^{n}=1+n x+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2) x^{3}}{3!}+\cdots, \tag{4}
\end{equation*}
$$

we can write

$$
\begin{align*}
R & =r\left\{1-\frac{r z^{\prime} \cos \theta}{r^{2}}+\frac{z^{\prime 2}}{2 r^{2}}-\frac{1}{8}\left(\frac{4 r^{2} z^{\prime 2} \cos ^{2} \theta-4 r z^{\prime} \cos \theta z^{\prime 2}+z^{\prime 4}}{r^{4}}\right)+\cdots\right\} \\
& =r-z^{\prime} \cos \theta+\frac{z^{\prime 2}}{2 r^{2}}-\frac{z^{\prime 2} \cos ^{2} \theta}{2 r}+\frac{z^{\prime 3} \cos \theta}{2 r^{2}}-\frac{z^{\prime 4}}{8 r^{3}}+\frac{1}{16} \frac{\left(-8 r^{3} z^{\prime 3} \cos ^{3} \theta\right)}{r^{5}}+\cdots \\
& \approx r-z^{\prime} \cos \theta+\frac{z^{\prime 2} \sin ^{2} \theta}{2 r}+\frac{z^{\prime 3} \cos \theta-z^{\prime 3} \cos ^{3} \theta}{2 r^{2}} \\
& \approx r-z^{\prime} \cos \theta+\frac{z^{\prime 2} \sin ^{2} \theta}{2 r}+\frac{z^{\prime 3} \cos \theta \sin ^{2} \theta}{2 r^{2}} \tag{5}
\end{align*}
$$

where terms with greater than r^{-3} dependence are assumed to be negligible.
This completes the derivation of the distance R, which matches equation (4-41) in Balanis. Sections 4.4.1 and 4.4.2 show how the error terms in this equation are constrained to determine the Fraunhofer and Fresnel regions.

