Formulations for Potentials

We wish to define suitable time-varying potential consistent with Maxwell's equations to aid their solution. Recall from electrostatics, the potentials are defined according to

$$
\begin{equation*}
\boldsymbol{E}=-\nabla V \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{B}=\nabla \times \boldsymbol{A} . \tag{2}
\end{equation*}
$$

Equation (2) seems okay, since

$$
\begin{equation*}
\nabla \cdot \boldsymbol{B}=\nabla \cdot \nabla \times \boldsymbol{A} \equiv 0 \tag{3}
\end{equation*}
$$

However, Faraday's Law has a problem because on the one hand,

$$
\begin{equation*}
\nabla \times \boldsymbol{E}=\nabla \times(-\nabla V) \equiv 0 \tag{4}
\end{equation*}
$$

yet we know that in fact

$$
\begin{equation*}
\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t} \tag{5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\nabla \times\left(\boldsymbol{E}+\frac{\partial \boldsymbol{A}}{\partial t}\right)=0 \tag{6}
\end{equation*}
$$

Since the term in parentheses is solenoidal (has no curl), it must be the gradient of some scalar function which we will call scalar electric potential Φ

$$
\begin{equation*}
\boldsymbol{E}+\frac{\partial \boldsymbol{A}}{\partial t}=-\nabla \Phi \quad \Rightarrow \quad \boldsymbol{E}=-\nabla \Phi-\frac{\partial \boldsymbol{A}}{\partial t} \tag{7}
\end{equation*}
$$

where we have retained the minus sign to be consistent with electrostatic relations. From Gauss' Law,

$$
\begin{gather*}
\nabla \cdot \boldsymbol{E}=\nabla \cdot\left(-\nabla \Phi-\frac{\partial \boldsymbol{A}}{\partial t}\right)=\frac{\rho_{e v}}{\epsilon_{0}} \tag{8}\\
\nabla^{2} \Phi+\frac{\partial}{\partial t}(\nabla \cdot \boldsymbol{A})=-\frac{\rho_{e v}}{\epsilon_{0}} \tag{9}
\end{gather*}
$$

From Ampère's Law,

$$
\begin{gather*}
\frac{1}{\mu_{0}} \nabla \times \nabla \times \boldsymbol{A}=\boldsymbol{J}+\epsilon_{0}\left[\frac{\partial}{\partial t}\left(-\nabla \Phi-\frac{\partial \boldsymbol{A}}{\partial t}\right)\right] \tag{10}\\
-\nabla(\nabla \cdot \boldsymbol{A})+\nabla^{2} \boldsymbol{A}-\mu_{0} \epsilon_{0}\left(\nabla \frac{\partial \Phi}{\partial t}+\frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}\right)=-\mu_{0} \boldsymbol{J} \tag{11}\\
\nabla^{2} \boldsymbol{A}-\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}-\nabla\left(\nabla \cdot \boldsymbol{A}+\frac{1}{c^{2}} \frac{\partial \Phi}{\partial t}\right)=-\mu_{0} \boldsymbol{J} . \tag{12}
\end{gather*}
$$

We would really like to decouple equations (9) and (12). At this point, we need to recognize that the Helmholtz theorem states that a vector field is uniquely defined only when both its curl and divergence are specified. For example, say $A_{y}=A_{z}=0$. Then, $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}$ gives

$$
\begin{align*}
& B_{x}=0 \tag{13}\\
& B_{y}=\partial A_{x} / \partial z \tag{14}\\
& B_{z}=-\partial A_{x} / \partial y \tag{15}
\end{align*}
$$

which provides no information on the possible variation of A_{x} with x. If we knew the divergence of \boldsymbol{A}, i.e.

$$
\begin{equation*}
\nabla \cdot \boldsymbol{A}=\frac{\partial A_{x}}{\partial x} \tag{16}
\end{equation*}
$$

our dilemma would be resolved.
The definition of \boldsymbol{B} is also arbitrary in that the gradient of some scalar function could be added to \boldsymbol{A} without changing \boldsymbol{B}; that is, a transformation of the form

$$
\begin{equation*}
\boldsymbol{A} \rightarrow \boldsymbol{A}+\nabla \Lambda \tag{17}
\end{equation*}
$$

does not change $\boldsymbol{B} . \Lambda$ is a gauge function. \boldsymbol{A} is unchanged because the curl of a gradient is zero. Similarly, \boldsymbol{E} in (7) must be unchanged, requiring a corresponding transformation of Φ defined by

$$
\begin{equation*}
\Phi \rightarrow \Phi-\frac{\partial \Lambda}{\partial t} \tag{18}
\end{equation*}
$$

yields

$$
\begin{equation*}
\boldsymbol{E}=\nabla\left(\Phi-\frac{\partial \Lambda}{\partial t}\right)-\frac{\partial}{\partial t}(\boldsymbol{A}+\nabla \Lambda)=-\nabla \Phi-\frac{\partial \boldsymbol{A}}{\partial t} . \tag{19}
\end{equation*}
$$

(17) and (18) collectively define a gauge transformation. The choice of a certain Λ changes the specification of $\nabla \cdot \boldsymbol{A}$, but not the fields \boldsymbol{E} and \boldsymbol{B}. This means these fields are gauge invariant. The apparent freedom in defining \boldsymbol{A} and Φ means that we can choose them advantageously to suit the problem at hand. Since we wish to form a wave equation, the Lorenz gauge

$$
\begin{equation*}
\nabla \cdot \boldsymbol{A}+\frac{1}{c^{2}} \frac{\partial \Phi}{\partial t} \tag{20}
\end{equation*}
$$

is particularly convenient, since then (12) becomes

$$
\begin{equation*}
\nabla^{2} \boldsymbol{A}-\frac{1}{c^{2}} \frac{\partial^{2} \boldsymbol{A}}{\partial t^{2}}=-\mu_{0} \boldsymbol{J} \tag{21}
\end{equation*}
$$

which is the vector wave equation.
Note that in (21) and (9) we now must solve second-order PDEs for the potentials, but in exchange, these equations only depend on potentials and they can be differentiated to find the fields \boldsymbol{E} and \boldsymbol{B}.

It is possible to use other potential functions to represent \boldsymbol{E} and \boldsymbol{H}. For example, it is possible to define a Hertzian potential $\boldsymbol{\Pi}_{e}$ such that

$$
\begin{align*}
\boldsymbol{A} & =\mu_{0} \epsilon_{0} \frac{\partial \boldsymbol{\Pi}_{e}}{\partial t} \tag{22}\\
\boldsymbol{E} & =\nabla\left(\nabla \cdot \boldsymbol{\Pi}_{e}\right)-\mu_{0} \epsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \boldsymbol{\Pi}_{e} \tag{23}\\
\boldsymbol{H} & =\mu_{0} \epsilon_{0} \nabla \times \frac{\partial \boldsymbol{\Pi}_{e}}{\partial t} \tag{24}
\end{align*}
$$

which allows the fields \boldsymbol{E} and \boldsymbol{B} to be found upon solving the wave equation for $\boldsymbol{\Pi}_{e}$,

$$
\begin{equation*}
\nabla^{2} \boldsymbol{\Pi}_{e}-\mu_{0} \epsilon_{0} \frac{\partial^{2} \boldsymbol{\Pi}_{e}}{\partial t^{2}}=-\frac{1}{\epsilon_{0}} \boldsymbol{P}^{i} \tag{25}
\end{equation*}
$$

where \boldsymbol{P}^{i} is an impressed polarization current that is independent of \boldsymbol{E} and defined according to $\boldsymbol{D}=\epsilon_{0} \boldsymbol{E}+\boldsymbol{P}+\boldsymbol{P}^{i}$. There is also a dual Hertzian potential $\boldsymbol{\Pi}_{m}$ for magnetic current, which defines

$$
\begin{align*}
\boldsymbol{F} & =\mu_{0} \epsilon_{0} \frac{\partial \boldsymbol{\Pi}_{m}}{\partial t} \tag{26}\\
\boldsymbol{D} & =-\mu_{0} \epsilon_{0} \nabla \times \frac{\partial \boldsymbol{\Pi}_{h}}{\partial t} \tag{27}\\
\boldsymbol{H} & =\nabla\left(\nabla \cdot \boldsymbol{\Pi}_{h}\right)-\mu_{0} \epsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \boldsymbol{\Pi}_{h} \tag{28}
\end{align*}
$$

where \boldsymbol{F} is the vector electric potential. The corresponding wave equation is

$$
\begin{equation*}
\nabla^{2} \boldsymbol{\Pi}_{h}-\mu_{0} \epsilon_{0} \frac{\partial^{2} \boldsymbol{\Pi}_{h}}{\partial t^{2}}=-\boldsymbol{M}^{i} \tag{29}
\end{equation*}
$$

where \boldsymbol{M}^{i} is the impressed magnetization current.

