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Formulations for Potentials

We wish to define suitable time-varying potential consistent with Maxwell’s equations to aid their
solution. Recall from electrostatics, the potentials are defined according to

E = −∇V (1)

and
B = ∇×A. (2)

Equation (2) seems okay, since
∇ ·B = ∇ · ∇ ×A ≡ 0 (3)

However, Faraday’s Law has a problem because on the one hand,

∇×E = ∇× (−∇V ) ≡ 0, (4)

yet we know that in fact

∇×E = −∂B

∂t
(5)

or equivalently

∇×
(
E +

∂A

∂t

)
= 0. (6)

Since the term in parentheses is solenoidal (has no curl), it must be the gradient of some scalar
function which we will call scalar electric potential Φ

E +
∂A

∂t
= −∇Φ ⇒ E = −∇Φ− ∂A

∂t
, (7)

where we have retained the minus sign to be consistent with electrostatic relations. From Gauss’
Law,

∇ ·E = ∇ ·
(
−∇Φ− ∂A

∂t

)
=

ρev
ϵ0

, (8)

∇2Φ +
∂

∂t
(∇ ·A) = −ρev

ϵ0
(9)

From Ampère’s Law,

1

µ0

∇×∇×A = J + ϵ0

[
∂

∂t

(
−∇Φ− ∂A

∂t

)]
(10)

−∇(∇ ·A) +∇2A− µ0ϵ0

(
∇∂Φ

∂t
+

∂2A

∂t2

)
= −µ0J (11)

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A+

1

c2
∂Φ

∂t

)
= −µ0J . (12)
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We would really like to decouple equations (9) and (12). At this point, we need to recognize that
the Helmholtz theorem states that a vector field is uniquely defined only when both its curl and
divergence are specified. For example, say Ay = Az = 0. Then, B = ∇×A gives

Bx = 0 (13)

By = ∂Ax/∂z (14)

Bz = −∂Ax/∂y (15)

which provides no information on the possible variation of Ax with x. If we knew the divergence
of A, i.e.

∇ ·A =
∂Ax

∂x
, (16)

our dilemma would be resolved.

The definition of B is also arbitrary in that the gradient of some scalar function could be added
to A without changing B; that is, a transformation of the form

A → A+∇Λ, (17)

does not change B. Λ is a gauge function. A is unchanged because the curl of a gradient is zero.
Similarly, E in (7) must be unchanged, requiring a corresponding transformation of Φ defined by

Φ → Φ− ∂Λ

∂t
(18)

yields

E = ∇
(
Φ− ∂Λ

∂t

)
− ∂

∂t
(A+∇Λ) = −∇Φ− ∂A

∂t
. (19)

(17) and (18) collectively define a gauge transformation. The choice of a certain Λ changes the
specification of ∇ ·A, but not the fields E and B. This means these fields are gauge invariant.
The apparent freedom in defining A and Φ means that we can choose them advantageously to
suit the problem at hand. Since we wish to form a wave equation, the Lorenz gauge

∇ ·A+
1

c2
∂Φ

∂t
(20)

is particularly convenient, since then (12) becomes

∇2A− 1

c2
∂2A

∂t2
= −µ0J , (21)

which is the vector wave equation.

Note that in (21) and (9) we now must solve second-order PDEs for the potentials, but in
exchange, these equations only depend on potentials and they can be differentiated to find the
fields E and B.
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It is possible to use other potential functions to represent E and H . For example, it is possible
to define a Hertzian potential Πe such that

A = µ0ϵ0
∂Πe

∂t
(22)

E = ∇(∇ ·Πe)− µ0ϵ0
∂2

∂t2
Πe (23)

H = µ0ϵ0∇× ∂Πe

∂t
(24)

which allows the fields E and B to be found upon solving the wave equation for Πe,

∇2Πe − µ0ϵ0
∂2Πe

∂t2
= − 1

ϵ0
P i, (25)

where P i is an impressed polarization current that is independent of E and defined according to
D = ϵ0E + P + P i. There is also a dual Hertzian potential Πm for magnetic current, which
defines

F = µ0ϵ0
∂Πm

∂t
(26)

D = −µ0ϵ0∇× ∂Πh

∂t
(27)

H = ∇(∇ ·Πh)− µ0ϵ0
∂2

∂t2
Πh (28)

where F is the vector electric potential. The corresponding wave equation is

∇2Πh − µ0ϵ0
∂2Πh

∂t2
= −M i, (29)

where M i is the impressed magnetization current.
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