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Formulations for Potentials

We wish to define suitable time-varying potential consistent with Maxwell's equations to aid their
solution. Recall from electrostatics, the potentials are defined according to

E=-VV (1)
and
B =V x A. (2)
Equation (2) seems okay, since
V. B=V.-VxA=0 (3)

However, Faraday's Law has a problem because on the one hand,

VXxE=Vx(-VV)=0, (4)
yet we know that in fact
VxE= —88—? (5)
or equivalently
Vx(E—F%):O. (6)

Since the term in parentheses is solenoidal (has no curl), it must be the gradient of some scalar
function which we will call scalar electric potential ¢

0A 0A
E—f—a——V@ = E——V(I)—E, (7)

where we have retained the minus sign to be consistent with electrostatic relations. From Gauss'
Law,

0A Pev
N E — N — @ _ = —
\Y \Y ( \Y BT ) . (8)
v2c1>+§(v-,4):_@ (9)
ot €0
From Ampere's Law,
1 0 0A
- A= — [ -V — — 1
Lo vna=giafd (e 24)] "
0d 0%A
20 1OA g 10%Y
V-A 20 VIV A+ 2o ) = tod . (12)
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We would really like to decouple equations (9) and (12). At this point, we need to recognize that
the Helmholtz theorem states that a vector field is uniquely defined only when both its curl and
divergence are specified. For example, say A, = A, = 0. Then, B =V x A gives

B, =0 (13)
B, = 04,/02 (14)
B. = —0A,/dy (15)

which provides no information on the possible variation of A, with x. If we knew the divergence
of A, ie.
04,

A
v ox '

(16)
our dilemma would be resolved.

The definition of B is also arbitrary in that the gradient of some scalar function could be added
to A without changing B; that is, a transformation of the form

A— A+ VA, (17)

does not change B. A is a gauge function. A is unchanged because the curl of a gradient is zero.
Similarly, E in (7) must be unchanged, requiring a corresponding transformation of ® defined by

OA
yields
oA 0 0A

(17) and (18) collectively define a gauge transformation. The choice of a certain A changes the
specification of V - A, but not the fields E and B. This means these fields are gauge invariant.
The apparent freedom in defining A and ® means that we can choose them advantageously to
suit the problem at hand. Since we wish to form a wave equation, the Lorenz gauge

109

V- A+ -~ 20
* c? ot (20)
is particularly convenient, since then (12) becomes
1 9’°A
2 _

which is the vector wave equation.

Note that in (21) and (9) we now must solve second-order PDEs for the potentials, but in
exchange, these equations only depend on potentials and they can be differentiated to find the
fields E and B.
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It is possible to use other potential functions to represent E and H. For example, it is possible
to define a Hertzian potential IT, such that

oIl
A= = 22
Ho€o ot (22)
82
E = I1) — —TII, 23
V(V - TL) = poco (23)
oIl,
H = 1y V % 5 (24)
which allows the fields E and B to be found upon solving the wave equation for II,,
011 1.
I, — — =P 2
\ Ho€o o2 il (25)

where P’ is an impressed polarization current that is independent of E and defined according to
D = ¢ E + P + P'. There is also a dual Hertzian potential IT,, for magnetic current, which
defines

oIl,,
F = 26
Ho€o ot (26)
oIl
D=— \Y 27
Hoco VX =5 (27)
2
H = V(V : Hh) — MQGO@Hh (28)
where F' is the vector electric potential. The corresponding wave equation is

011, ,

2 o A
\Y% Hh — /ULOGOW =-M 3 (29)

where M is the impressed magnetization current.
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