MoM Using RWG Basis Functions

In this note we aim to derive expressions for the impedance matrix and voltage vector elements for a conducting structure in free space. The conducting structures are represented using RWG basis functions, defined as [1]

$$
\boldsymbol{f}_{n}\left(\boldsymbol{r}^{\prime}\right)=\left\{\begin{array}{ll}
\frac{l_{n}}{2 A_{n}^{+}} \boldsymbol{\rho}_{n}^{+} & \boldsymbol{r}^{\prime} \text { in } T_{n}^{+} \tag{1}\\
\frac{l_{n}}{2 A_{n}^{-}} \boldsymbol{\rho}_{n}^{-} & \boldsymbol{r}^{\prime} \text { in } T_{n}^{-} \\
0 & \text { elsewhere }
\end{array} .\right.
$$

The surface divergence of these basis functions are

$$
\nabla_{S} \cdot \boldsymbol{f}_{n}\left(\boldsymbol{r}^{\prime}\right)= \begin{cases}\frac{l_{n}}{A_{n}^{+}} & \boldsymbol{r}^{\prime} \text { in } T_{n}^{+} \tag{2}\\ -\frac{l_{n}}{A_{n}} & \boldsymbol{r}^{\prime} \text { in } T_{n}^{-} \\ 0 & \text { elsewhere }\end{cases}
$$

1 Evaluation of Impedance Matrix

The electric field integral equation (EFIE) states that over the surface of the conductor S, the tangential component of the incident electric field ($\left.\boldsymbol{E}^{\text {inc }}\right)$ and the tangential component scattered electric field $\left(\boldsymbol{E}^{s}(\boldsymbol{r})\right)$ satisfy

$$
\begin{equation*}
\boldsymbol{E}_{t a n}^{i n c}(\boldsymbol{r})+\boldsymbol{E}_{\tan }^{s}(\boldsymbol{r})=0, \quad \boldsymbol{r} \text { on } S \tag{3}
\end{equation*}
$$

assuming there are no losses in the conductor. The scattered electric field can be found as

$$
\begin{equation*}
\boldsymbol{E}^{s}(\boldsymbol{r})=-j \omega \boldsymbol{A}(\boldsymbol{r})-j \frac{1}{\omega \mu_{0} \epsilon_{0}} \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{A}(\boldsymbol{r}))=-j \omega \boldsymbol{A}(\boldsymbol{r})-\nabla \Phi(\boldsymbol{r}) \tag{4}
\end{equation*}
$$

For linear current densities \boldsymbol{J}_{s} and surface charge densities $\rho_{e s}$, the vector magnetic potential $\boldsymbol{A}(\boldsymbol{r})$ and scalar electric potential $\Phi(\boldsymbol{r})$ can be found, respectively, as

$$
\begin{equation*}
\boldsymbol{A}(\boldsymbol{r})=\frac{\mu_{0}}{4 \pi} \iint_{S} \boldsymbol{J}_{s}\left(\boldsymbol{r}^{\prime}\right) \frac{e^{-j k_{0} R}}{R} d s^{\prime} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(\boldsymbol{r})=\iint_{S} \frac{\rho_{e s}\left(\boldsymbol{r}^{\prime}\right)}{4 \pi \epsilon_{0}} \frac{e^{-j k_{0} R}}{R} d v^{\prime} \tag{6}
\end{equation*}
$$

where $R=\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|$.
The EFIE is tested using expansion functions which are the same as the basis functions (1) (Galerkin's method) according to

$$
\begin{equation*}
\left\langle\boldsymbol{E}^{i n c}, \boldsymbol{f}_{m}\right\rangle=j \omega\left\langle\boldsymbol{A}, \boldsymbol{f}_{m}\right\rangle+\left\langle\nabla \Phi, \boldsymbol{f}_{m}\right\rangle \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle\boldsymbol{f}, \boldsymbol{g}\rangle=\int_{S} \boldsymbol{f} \cdot \boldsymbol{g} d s \tag{8}
\end{equation*}
$$

Employing the equation of continuity, which on surfaces states

$$
\begin{equation*}
\boldsymbol{\nabla}_{S} \cdot \boldsymbol{J}_{s}=-j \omega \rho_{e s}, \tag{9}
\end{equation*}
$$

the scalar potential can be evaluated as

$$
\begin{equation*}
\Phi(\boldsymbol{r})=\iint_{S} \frac{\rho_{e s}\left(\boldsymbol{r}^{\prime}\right)}{4 \pi \epsilon_{0}} \frac{e^{-j k_{0} R}}{R} d s^{\prime}=-\frac{1}{j \omega 4 \pi \epsilon_{0}} \iint_{S} \boldsymbol{\nabla}_{S} \cdot \boldsymbol{J}_{s}\left(\boldsymbol{r}^{\prime}\right) \frac{e^{-j k_{0} R}}{R} d s^{\prime} \tag{10}
\end{equation*}
$$

In the moment method, the current density on the patch is represented as a summation of basis functions \boldsymbol{J}_{n} with unknown amplitudes I_{n}. Therefore, we can write

$$
\begin{equation*}
\boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right)=\sum_{n} I_{n} \boldsymbol{f}_{n}\left(\boldsymbol{r}^{\prime}\right) \tag{11}
\end{equation*}
$$

Carrying out the testing procedure at each interior edge in the mesh yields

$$
\begin{equation*}
\left\langle\boldsymbol{E}^{i n c}, \boldsymbol{f}_{m}\right\rangle=j \omega\left\langle\boldsymbol{A}, \boldsymbol{f}_{m}\right\rangle+\left\langle\nabla \Phi, \boldsymbol{f}_{m}\right\rangle . \tag{12}
\end{equation*}
$$

The testing function f_{m} is defined over two regions. Therefore, the reaction integral is divided over two regions,

$$
\begin{align*}
\left\langle\left\{\begin{array}{c}
\boldsymbol{E}^{i} \\
\boldsymbol{A}
\end{array}\right\}, \boldsymbol{f}_{m}\right\rangle & =l_{m}\left[\frac{1}{2 A_{m}^{+}} \iint_{T_{m}^{+}}\left\{\begin{array}{c}
\boldsymbol{E}^{i} \\
\boldsymbol{A}
\end{array}\right\} \cdot \boldsymbol{\rho}_{m}^{+} d s+\frac{1}{2 A_{m}^{-}} \iint_{T_{m}^{-}}\left\{\begin{array}{c}
\boldsymbol{E}^{i} \\
\boldsymbol{A}
\end{array}\right\} \cdot \boldsymbol{\rho}_{m}^{-}\right] d s, \tag{13}\\
\left\langle\nabla \Phi, \boldsymbol{f}_{m}\right\rangle & =-\iint_{S} \Phi \boldsymbol{\nabla}_{S} \cdot \boldsymbol{f}_{m} d s=-l_{m}\left(\frac{1}{A_{m}^{+}} \iint_{T_{m}^{+}} \Phi d s-\frac{1}{A_{m}^{-}} \iint_{T_{m}^{-}} \Phi d s\right) . \tag{14}
\end{align*}
$$

The first equality in (14) results from a surface vector calculus identity and the properties of the basis function (see equation (A3.47) in [2]).

The reaction integrals above can be approximated by evaluating field quantities at the centre of each triangle $\boldsymbol{r}_{m}^{c \pm}$, so that

$$
\left\langle\left\{\begin{array}{l}
\boldsymbol{E}^{i n c} \tag{15}\\
\boldsymbol{A}
\end{array}\right\}, \boldsymbol{f}_{m}\right\rangle \approx \frac{l_{m}}{2}\left[\left\{\begin{array}{l}
\boldsymbol{E}^{i n c}\left(\boldsymbol{r}_{m}^{c+}\right) \\
\boldsymbol{A}\left(\boldsymbol{r}_{m}^{c+}\right)
\end{array}\right\} \cdot \boldsymbol{\rho}_{m}^{c+}+\left\{\begin{array}{l}
\boldsymbol{E}^{i n c}\left(\boldsymbol{r}_{m}^{c-}\right) \\
\boldsymbol{A}\left(\boldsymbol{r}_{m}^{c-}\right)
\end{array}\right\} \cdot \boldsymbol{\rho}_{m}^{c-}\right] .
$$

Similarly, for the scalar potentials,

$$
\begin{equation*}
\left\langle\nabla \Phi(\boldsymbol{r}), \boldsymbol{f}_{m}\left(\boldsymbol{r}^{\prime}\right)\right\rangle \approx l_{m}\left[\Phi\left(\boldsymbol{r}_{m}^{c+}\right)-\Phi\left(\boldsymbol{r}_{m}^{c-}\right)\right] \tag{16}
\end{equation*}
$$

Equation (12) is enforced at every triangle edge $m=1,2,3, \ldots$. The fields are evaluated at the centre of the respective triangles, \boldsymbol{r}_{m}^{c-} and \boldsymbol{r}_{m}^{c+} associated with edge m. The impedance matrix can then be defined as

$$
\begin{equation*}
Z_{m n}=l_{m}\left[j \omega\left(\boldsymbol{A}\left(\boldsymbol{r}_{m}^{c+}\right) \cdot \frac{\boldsymbol{\rho}_{m}^{c+}}{2}+\boldsymbol{A}\left(\boldsymbol{r}_{m}^{c-}\right) \cdot \frac{\boldsymbol{\rho}_{m}^{c-}}{2}\right)+\Phi\left(\boldsymbol{r}_{m}^{c-}\right)-\Phi\left(\boldsymbol{r}_{m}^{c+}\right)\right] . \tag{17}
\end{equation*}
$$

where the index j indicates that the j th basis function is used to find the potential. (17) can be written more compactly as

$$
\begin{equation*}
Z_{m n}=l_{m}\left[j \omega\left(\boldsymbol{A}_{m n}^{+} \cdot \frac{\boldsymbol{\rho}_{m}^{c+}}{2}+\boldsymbol{A}_{m n}^{-} \cdot \frac{\boldsymbol{\rho}_{m}^{c-}}{2}\right)+\Phi_{m n}^{-}-\Phi_{m n}^{+}\right] \tag{18}
\end{equation*}
$$

where a function $F^{ \pm}$indicates that it is evaluated at the field position $\boldsymbol{r}_{m}^{c \pm}$. The potentials in (18) are given by

$$
\begin{align*}
\boldsymbol{A}_{m n}^{ \pm} & =\frac{\mu}{4 \pi} \iint_{S} \boldsymbol{f}^{j}\left(\boldsymbol{r}^{\prime}\right) \frac{e^{-j k R_{m}^{ \pm}}}{R_{m}^{ \pm}} d s^{\prime} \tag{19}\\
\Phi_{m n}^{ \pm} & =-\frac{1}{4 \pi j \omega \epsilon} \iint_{S} \nabla_{S} \cdot \boldsymbol{f}^{j}\left(\boldsymbol{r}^{\prime}\right) \frac{e^{-j k R_{m}^{ \pm}}}{R_{m}^{ \pm}} d s^{\prime} \tag{20}\\
R_{m}^{ \pm} & =\left|\boldsymbol{r}_{m}^{ \pm \pm}-\boldsymbol{r}^{\prime}\right| \tag{21}
\end{align*}
$$

The basis and weighting functions f^{j} are defined over two regions, one in the $(+)$ triangle and one in the (-) triangle. The testing function has been evaluated over two regions already in the reaction integral. The potentials must also be expanded over the basis function regions. Hence, evaluating a potential at a given field position at the centre of a (+) or (-) triangle receives contributions from two source triangles,

$$
\begin{align*}
\boldsymbol{A}_{m n}^{ \pm} & =\frac{\mu}{4 \pi} \iint_{T_{n}^{+}} \frac{l_{n}}{2 A_{n}^{+}} \boldsymbol{\rho}_{n}^{+} \cdot \frac{e^{-j k R_{m}^{ \pm}}}{R_{m}^{ \pm}} d s^{\prime}+\frac{\mu}{4 \pi} \iint_{T_{n}^{-}} \frac{l_{n}}{2 A_{n}^{-}} \boldsymbol{\rho}_{n}^{-} \cdot \frac{e^{-j k R_{m}^{ \pm}}}{R_{m}^{ \pm}} d s^{\prime} \tag{22}\\
\Phi_{m n}^{ \pm} & =-\frac{1}{4 \pi j \omega \epsilon} \iint_{T_{n}^{+}} \frac{l_{n}}{A_{n}^{+}} \frac{e^{-j k R_{m}^{ \pm}}}{R_{m}^{ \pm}} d s^{\prime}+\frac{1}{4 \pi j \omega \epsilon} \iint_{T_{n}^{-}} \frac{l_{n}}{A_{n}^{-}} \frac{e^{-j k R_{m}^{ \pm}}}{R_{m}^{ \pm}} d s^{\prime} \tag{23}
\end{align*}
$$

Substituting into (18),

$$
\begin{align*}
Z_{m n}= & l_{m}\left\{j \omega \frac { \mu l _ { n } } { 8 \pi } \left[\left(\iint_{T_{n}^{+}} \frac{1}{A_{n}^{+}} \boldsymbol{\rho}_{n}^{+} \frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}} d s^{\prime}+\iint_{T_{n}^{-}} \frac{1}{A_{n}^{-}} \boldsymbol{\rho}_{n}^{-} \frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}} d s^{\prime}\right) \cdot \frac{\boldsymbol{\rho}_{m}^{c+}}{2}+\right.\right. \\
& \left.\left(\iint_{T_{n}^{+}} \frac{1}{A_{n}^{+}} \boldsymbol{\rho}_{n}^{+} \frac{e^{-j k R_{m}^{-}}}{R_{m}^{-}} d s^{\prime}+\iint_{T_{n}^{-}} \frac{1}{A_{n}^{-}} \boldsymbol{\rho}_{n}^{-} \frac{e^{-j k R_{m}^{-}}}{R_{m}^{-}} d s^{\prime}\right) \cdot \frac{\boldsymbol{\rho}_{m}^{c-}}{2}\right]- \\
& \frac{l_{n}}{4 \pi j \omega \epsilon}\left[\left(\iint_{T_{n}^{+}} \frac{1}{A_{n}^{+}} \frac{e^{-j k R_{m}^{-}}}{R_{m}^{-}} d s^{\prime}-\iint_{T_{n}^{-}} \frac{1}{A_{n}^{-}} \frac{e^{-j k R_{m}^{-}}}{R_{m}^{-}} d s^{\prime}\right)+\right. \\
& \left.\left.\left(\iint_{T_{n}^{+}} \frac{1}{A_{n}^{+}} \frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}} d s^{\prime}-\iint_{T_{n}^{-}} \frac{1}{A_{n}^{-}} \frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}} d s^{\prime}\right)\right]\right\} \tag{24}
\end{align*}
$$

We now group integrations by region,

$$
\begin{align*}
Z_{m n}= & l_{m}\left\{j \omega \frac { \mu l _ { n } } { 1 6 \pi } \left[\frac{1}{A_{n}^{+}} \iint_{T_{n}^{+}}\left(\boldsymbol{\rho}_{n}^{+} \cdot \boldsymbol{\rho}_{m}^{c+} \frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}}+\boldsymbol{\rho}_{n}^{+} \cdot \boldsymbol{\rho}_{m}^{c-e^{-j k R_{m}^{-}}} \frac{R_{m}^{-}}{}\right) d s^{\prime}+\right.\right. \\
& \left.\frac{1}{A_{n}^{-}} \iint_{T_{n}^{-}}\left(\boldsymbol{\rho}_{n}^{-} \cdot \boldsymbol{\rho}_{m}^{c+} \frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}}+\boldsymbol{\rho}_{n}^{-} \cdot \boldsymbol{\rho}_{m}^{c-} \frac{e^{-j k R_{m}^{-}}}{R_{m}^{-}}\right) d s^{\prime}\right]+ \\
& \frac{l_{n}}{4 \pi j \omega \epsilon}\left[\frac{1}{A_{n}^{+}} \iint_{T_{n}^{+}}\left(\frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}}-\frac{e^{-j k R_{m}^{-}}}{R_{m}^{-}}\right) d s^{\prime}-\right. \\
& \left.\left.\frac{1}{A_{n}^{-}} \iint_{T_{n}^{-}}\left(\frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}}-\frac{e^{-j k R_{m}^{-}}}{R_{m}^{-}}\right) d s^{\prime}\right]\right\} \tag{25}
\end{align*}
$$

Surface integrals over a given triangle are approximated by summing over 9 sub-triangles composing the triangle of interest, derived using barycentric subdivision. That is,

$$
\begin{equation*}
\iint_{T_{n}} g(\boldsymbol{r}) d s \approx \frac{A_{n}}{9} \sum_{k=1}^{9} g\left(\boldsymbol{r}_{k}^{c}\right) \tag{26}
\end{equation*}
$$

where \boldsymbol{r}_{k}^{c} is the centre of the k th sub-triangle. The impedance matrix is then approximated as

$$
\left.\left.\begin{array}{rl}
Z_{m n} \approx & l_{m}\left\{j \omega \frac { \mu l _ { n } } { 1 4 4 \pi } \left[\sum_{k=1}^{9}\left(\boldsymbol{\rho}_{j, k}^{c+} \cdot \boldsymbol{\rho}_{m}^{c+} \frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}}+\boldsymbol{\rho}_{j, k}^{c+} \cdot \boldsymbol{\rho}_{m}^{c-} \frac{e^{-j k R_{m}^{-}}}{R_{m}^{-}}\right) d s^{\prime}+\right.\right. \\
& \sum_{k=1}^{9}\left(\boldsymbol{\rho}_{j, k}^{c-} \cdot \boldsymbol{\rho}_{m}^{c+} \frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}}+\boldsymbol{\rho}_{j, k}^{c-} \cdot \boldsymbol{\rho}_{m}^{c-}\right. \\
e_{m}^{-j k R_{m}^{-}} \\
R_{m}^{-} \tag{27}
\end{array}\right) d s^{\prime}\right]+\quad \frac{l_{n}}{36 \pi j \omega \epsilon}\left[\sum_{k=1}^{9}\left(\frac{e^{-j k R_{m}^{+}}}{R_{m}^{+}}-\frac{e^{-j k R_{m}^{-}}}{R_{m}^{-}}\right) d s^{\prime}-\quad .\right.
$$

where $\rho_{j, k}^{c \pm}$ is the centre of the k th sub-triangle in triangle j. We note that the constant outside the parentheses on the first line is the factor FactorA in the rwg3.m code [3]. The constant outside the parentheses on the third line is FactorFi, while the inner most term in parentheses is gP - gM in impmet. m .

2 Evaluation of Voltage Vector

The voltage vector is given by

$$
\begin{equation*}
V_{m}=\left\langle\boldsymbol{E}^{i n c}(\boldsymbol{r}), \boldsymbol{f}_{m}\left(\boldsymbol{r}^{\prime}\right)\right\rangle=\iint_{S} \boldsymbol{f}_{m}(\boldsymbol{r}) \cdot \boldsymbol{E}^{i n c}(\boldsymbol{r}) d s \tag{28}
\end{equation*}
$$

we see that the voltage vector is the reaction of the weighting function \boldsymbol{f}_{m} with the incident electric field. Since the basis function is defined over two triangles, we expect for each edge (each impedance matrix element) that there will be a contribution from both field triangles. It appears that rather than carry out a Barycentric summation for the voltage vectors, the following approximation is used [3]:

$$
\begin{equation*}
V_{m} \approx \boldsymbol{f}_{m}(\boldsymbol{r}) \cdot \boldsymbol{E}^{i n c}(\boldsymbol{r}) d s \tag{29}
\end{equation*}
$$

It then follows from (1) that

$$
\begin{equation*}
V_{m} \approx l_{m}\left[\boldsymbol{E}^{i n c}\left(\boldsymbol{r}_{m}^{c+}\right) \cdot \frac{\boldsymbol{\rho}_{m}^{c+}}{2}+\boldsymbol{E}^{i n c}\left(\boldsymbol{r}_{m}^{c-}\right) \cdot \frac{\boldsymbol{\rho}_{m}^{c-}}{2}\right] \tag{30}
\end{equation*}
$$

References

[1] S. Rao, D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, vol. 30, no. 3, pp. 409-418, May 1982.
[2] J. van Bladel, Electromagnetic Fields, 2nd ed. Wiley-IEEE Press, 2007.
[3] S. N. Makarov, Antenna and EM Modeling with MATLAB. New York: John Wiley and Sons, 2002.

