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Half-wave Dipole

The dipole we have studied so far is not terribly useful, since it is not very efficiency and difficult to
impedance-match to. Both these facts are a result of the electrically small nature of the antenna.
A more practical dipole is the half-wave dipole (referring to the fact that it is λ/2 long). The
main reason for this, as we will see, is that the half-wave dipole has a real input impedance at
resonance which is close to common system impedances.

Radiated Fields

Given the length of the dipole, it seems doubtful that the current distribution will be uniform as
with the case of the Hertzian dipole. If we think about an open-circuited transmission line made
of two wires, we imagine a sinusoidal current distribution set up by the standing wave along a
quarter-wavelength length of line as follows:

Note that there is no current at z = λ/4 as required by the open circuit boundary condition. Now,
if we “open” up the transmission line, we can essentially create a dipole that is half a wavelength
long:

We can write the current distribution as

I(z) = Im cos(βz), (1)
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where β is the phase constant associated with the transmission line from which we have drawn the
current distribution. Since we are in free space, β = ω/c = k. Knowing the current distribution,
our next question is how to find the electric field produced by the dipole? Well, we know that a
tiny piece of dipole produces an electric field in the far field of

Eθ =
I∆zjωµ

4π

e−jkr

r
sin θ (2)

if excited with a current element of amplitude I at the origin. Using superposition, we can represent
the half-wave dipole as a collection of Hertzian dipoles and add up all the responses of each dipole.
Hence, each dipole “piece” contributes an electric field

dEθ =
I(z′)dz′jωµ

4π

e−jkR

R
sin θ. (3)

Now, since we are in the far field, the diagram above is not really correct. As the point P moves
far from the source, the vectors R and r become parallel. This is known as the parallel ray
approximation. Under this approximation,

1

R
≈ 1

r
for amplitude variations (4)

exp(−jkR) ≈ exp[−jk(r − z′ cos θ)] for phase variations (5)

where the latter approximation is evident by examining the geometry of the far-field situation.

Then,

dEθ =
I(z′)dz′jωµ

4π

e−jkr

r
ejkz

′ cos θ sin θ (6)

Eθ =

ˆ z′=λ/4

z′=−λ/4

I(z′)jωµ

4π

e−jkr

r
ejkz

′ cos θ sin θdz′ (7)

=
jωµ

4π

e−jkr

r

ˆ z′=λ/4

z′=−λ/4
Im cos(βz′)ejkz

′ cos θ sin θdz′ (8)
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NOTE: ˆ
sin(a+ bx)ecx =

ecx

b2 + c2
[c sin(a+ bx)− b cos(a+ bx)] + C (9)

ˆ z′=λ/4

z′=−λ/4
sin(π/2 + kz′)ejkz

′ cos θ =
ejkz

′ cos θ

k2 + (jk cos θ)2
[jk cos θ sin(π/2 + kz′)− β cos(π/2 + kz′)]

∣∣∣∣λ/4
−λ4

=
ejk

λ
4
cos θ

k2 − k2 cos2 θ

[
jk cos θ(((((((((

sin(π/2 + kλ/4)− β cos(π/2 + βλ/4)
]
−

e−jk
λ
4
cos θ

k2 − k2 cos2 θ

[
jk cos θ(((((((((

sin(π/2− kλ/4)− beta cos(π/2− βλ/4)
]

=
ej

π
2
cos θ

β2 sin2 θ
β +

e−j
π
2
cos θ

β2 sin2 θ
β = 2

cos
(
π
2

cos θ
)

β sin2 θ
(10)

Therefore,

Eθ =
jωµIm

4π

e−jkr

r
sin θ︸ ︷︷ ︸

Hertzian dipole E-field

· 2
cos
(
π
2

cos θ
)

β sin2 θ︸ ︷︷ ︸
space factor

(11)

and since β = k and ωµ/k = η,

Eθ =
jηIm
2π

e−jkr

r

cos
(
π
2

cos θ
)

sin θ
. (12)

Hφ follows as

Hφ =
Eθ
η

=
jIm
2π

e−jkr

r

cos
(
π
2

cos θ
)

sin θ
. (13)

Radiation Pattern

If we take a polar plot of the pattern indicated by the above expressions, and compare to the
pattern from a Hertzian dipole, we notice that a half-wave dipole has slightly less beamwidth than
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the Hertzian dipole. In fact, the HPBW of a Hertzian dipole is 90◦, while that of a half-wave
dipole is only 78◦. Hence, we expect the half-wave dipole to exhibit slightly more directivity than
its Hertzian counterpart.
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Directivity and Input Impedance

Let’s evaluate the directivity and input impedance of the half-wave dipole at the frequency where
the dipole is exactly half a wavelength long. We begin by calculating the radiation intensity
produced by the dipole:

U(θ) =
1

2
r2
|Eθ|2

η
=

1

2

ηI2m
(2π)2

cos2(π/2 cos θ)

sin2 θ
. (14)

The radiated power produced by the dipole is

Wrad =

ˆ 2π

0

ˆ π

0

U(θ) sin θdθdφ (15)

=
1

2
(2π)

ηI2m
(2π)2

ˆ π

0

cos2(π
2

cos θ)

sin θ
dθ︸ ︷︷ ︸

1.2188 numerically

(16)

= 30(1.2188)I2m = 36.5640I2m. (17)

The directivity relative to an isotropic radiator is then calculated as

Dm =
4πUm
Wrad

=
4π

8π2
ηI2m ·

1

36.5640I2m
= 1.64 (18)

Therefore,
Ddipole = 1.64 = 2.15 dBi = 0 dBd. (19)

Notice that the dBd unit expresses the directivity with respect to a half-wave dipole, and hence
compared to itself, a half-wave dipole has 0 dBd of gain.

Prof. Sean Victor Hum Radio and Microwave Wireless Systems



Half-wave Dipole Page 5

For the input impedance, we anticipate both a real and imaginary part, since the near-fields of
the dipole will contribute to a reactive component. The input resistance can be found as follows:
Then,

Rrad =
2Wrad

I2m
= 73.1280 Ω (20)

The calculation of the reactive part of the input impedance is much more involved and beyond
the scope of the discussion here. The final result for the dipole’s input impedance is

Zdipole = 73 + j42.5 Ω. (21)

That is, the input impedance of the dipole is slightly inductive. However, there exists a “resonance”
frequency where the imaginary part of the dipole’s input impedance goes to zero. This occurs at
a slightly lower frequency and produces

Zdipole = 70 + j0 Ω, (22)

which is a useful operating point for the antenna. Common coaxial lines, such as RG-59U, have
a characteristic impedance of 75 Ω and hence can readily be connected to a dipole without
impedance matching, although usually one cannot feed dipoles directly from coaxial line (more
on that later).

Finally, the ohmic loss in a half-wave dipole is

Rohmic =
Rs

2πa

λ

4
. (23)

The details of this calculation have been omitted, but this is not the same expression as a Hertzian
dipole. The reason for this is that the ohmic losses are a function of position because the current
is not uniformly distributed along the length of the dipole. In fact, if one plugs in L = λ/4
into the expression for the Hertzian dipole and compare to the above expression, the ohmic loss
is twice that predicted by (23), suggesting that only half of the dipole effectively contributes to
significant ohmic losses.

Prof. Sean Victor Hum Radio and Microwave Wireless Systems


