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Reflection/Refraction

1 Boundary Conditions

Interfaces between different media imposed special boundary conditions on Maxwell’s equations.
It is important to understand what restrictions are placed on the electric and magnetic fields at
a media interfance, since reflection and refraction of radio waves is described in terms of these
boundary conditions.

To do this, we explicitly examine the normal and tangential components of the fields at a media
interface. An example of an interface between two media, labelled as media 1 and 2, is illustrated
below.

In this figure, we see electric and magnetic field density components, as well as a surface current
density and a surface charge density denoted as J s and ρs, respectively. The unit vector n̂ is
normal to the media interface and points toward medium 1.

Let’s look at the normal components first, starting with the electric field density. The electric
field density D is described by Gauss’ Law:

˛
S

D · d~S ′ =
ˆ
v

ρvdv
′ (1)

To evaluate the left hand side of the equation, let’s use a small cylinder shown in the drawing
below as the surface of integration.

The surfaces that contribute to the surface integral are the top of the cylinder, the bottom of
the cylinder, and the side of the cylinder. If we shrink the cylinder so that it’s height h tends to
zero, then the dot products evaluated along the top and bottom of cylinder dominate the surface
integral, and we have

∆SDn2 −∆SDn1 = ∆Sρs

n̂ · (D2 −D1) = ρs. (2)
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This is the boundary condition for the normal component of the electric field density.

Similarly, due to the divergence-free nature of B, we obtain˛
S

B · d~S ′ = 0

n̂ ·B1 = n̂ ·B2, (3)

which is the boundary condition for the normal component of the magnetic field density.

Now, for the tangential electric field, we use Faraday’s Law, which states that˛
C

E · d~̀= −jω
ˆ
S

B · d~S ′. (4)

For the contour of integration, let’s use a rectangular contour as illustrated below.

Like the previous case, we will consider the situation where the sides h of the rectangle are
shrunk so that they are infinitisemally long, so that only the dot products along the length of the
rectanglar are significant on the left hand side. Furthermore, on the right hand side, the area of
the rectangle ∆S also tends to zero as h→ 0, yielding

Et1 = Et2 (5)

or,
n̂×E1 = n̂×E2. (6)

For the magnetic field, we use Ampere’s Law:˛
C

H · d~̀=

ˆ
S

J · d~S ′. (7)

Again, as h tends to zero, only the tangential components of H make a significant contribution
to the contour integral, while the right hand side reduces to the enclosed current density, Js.

Ht2 −Ht1 = Js, (8)

or, equivalently,
n̂× (H2 −H1) = J s. (9)

Now, let’s consider what happens when we consider specific cases for media interfaces. We will
consider two: the interface between to dissimilar, dielectric media, and the interfance between a
dielectric medium and a perfect electrical conductor. Both are extremely practical cases that we
will deal with again later when we examine the reflection and refraction of radio waves at media
interfaces.
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1.1 Case 1: Dielectric Interface

At an interface between to dielectric media, ρs = 0, assuming the dielectrc is free of unbound
charges. As well, dielectrics do not support current flow, and hence J s = 0. Subsitituting these
conditions into Equations (2), (3), (6), and (9), we obtain the following:

n̂ ·D2 = n̂ ·D1 (10)

n̂ ·B2 = n̂ ·B1 (11)

n̂×E2 = n̂×E1 (12)

n̂×H2 = n̂×H1. (13)

Hence we can make the following observations:

1. Normal components of D and B are continuous across a dielectric interface

2. Tangential components of E, H are continuous across a dielectric surface

1.2 Case 2: Interface with Perfect Electrical Conductor

When we have a dielectric medium in contact with a perfect electrical conductor (PEC), a different
set of field conditions are obtained. A PEC has infinite conductivity, i.e., σ = ∞. Hence, inside
the PEC, from Ohm’s Law,

J = σE ⇒ E =
J

σ
→ 0 as σ →∞. (14)

Therefore, the electric fields are effectively “shorted out” in the PEC. The same is also true of
the magnetic field (and magnetic field density):

B =
−1

jω
∇×E = 0⇒ B = 0,H = 0. (15)

The situtation is summarized in the illustration below. We notice that since a PEC can support
both surface charge and current densities, i.e., ρs,J s 6= 0, which directly impacts Equations (9).
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Since fields can only exist on the dielectric side of the interface, we can summarize the effect on
the normal and tangential field components as follows:

n̂ ·D = ρs (16)

n̂ ·B = 0 (17)

n̂×E = 0 (18)

n̂×H = J s. (19)

2 Plane Wave Reflections at a Media Interface

We will consider two types of reflection scenarios: reflection at an interface between two dielectric
media, and reflection at an interface with a perfect electrical conductor. In each case we will
derive the Fresnel reflection coefficient Γ which is in general a function of wave polarization,
angle of incidence, and frequency.

Consider the interface between two media. Medium 1 is assumed to have a permittivity ε1 and
permeability µ1; likewise medium 2 has ε2 and µ2. They can be dielectric, conductors, or whatever
you want. Now introduce a plane wave incident from medium 1. It consists of electric (E) and
magnetic (H) fields. When it reaches the media interface, part of the wave is reflected, and part
of it is transmitted. Let subscripts i, r, and t refer to the incident, reflected, and transmitted
fields, respectively.

Consider the diagrams below. Rays indicating the direction of propagation are shown making
angles θi, θr, and θt with the z-axis, or the axis normal to the interface. All rays are in the
same plane, called the plane of incidence. The vectors shown in the diagram are for the electric
field (which are obviously normal to the direction of propagation, right?), but bear in mind the
magnetic field exists as well. Two specific cases for electric field polarization are shown (reference
directions are shown). Case (a) shows the electric field polarized parallel to the plane of the page.
Case (b) shows the case of the electric field polarized perpendicular to the page. Of course, a
combination of these polarization is possible, but we will show the conditions for transmission and
reflection reduce down to these two situations.

At a dielectric media interface, two phenomena can generally occur. There is a reflection back
into the incident media, and there is transmission (in the form of refraction) into the second
media. Conversely, if the second media is a perfect electrical conductor, then only reflection will
occur. Let’s consider the dielectric case first.

2.1 Reflection/Refraction at a Dielectric Interface

In the diagram, the waves can be polarized arbitrarily. We will consider two cases of polarization,
since any wave can be decomposed into these two cases. The first is an electric field parallel to
the plane containing all the wave propagation vectors (i.e., parallel to the page or the xz-plane).
The other polarization is an electric field perpendicular to the xz-plane (parallel to the y-axis).
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(a) Parallel polarization (b) Perpendicular polarization

Figure 1: Courtesy D. K. Cheng, “Field and Wave Electromagnetics”, 2nd. Ed., Addison Wesley

2.1.1 Parallel Polarization

Consider the representation of the incident wave. The wavenumber in medium 1 is denoted as
k1 = ω

√
µ1ε1; since we have propagation at an angle θi to the z-axis, the vector wavenumber of

the incident plane wave is represented as

ki = k1 sin θi x̂ + k1 cos θ ẑ (20)

If the magnitude of the incident electric field is E0, and the electric field vector lies in the xz-plane,
we can write the electric and magnetic fields as:

Ēi = E0e
−jk·r̂ = E0(x̂ cos θi − ẑ sin θi)e

−jk1(x sin θi+z cos θi) (21)

H̄i = H0e
−jk·r̂ =

E0

η1
ŷe−jk1(x sin θi+z cos θi) (22)

where η1 =
√

µ1
ε1

. Similarly, the reflected and transmitted fields can be written as

Ēr = E0Γ‖(x̂ cos θr + ẑ sin θr)e
−jk1(x sin θr−z cos θr) (23)

H̄r = −
E0Γ‖
η1

ŷe−jk1(x sin θr−z cos θr) (24)

Ēt = E0T‖(x̂ cos θt − ẑ sin θt)e
−jk2(x sin θt+z cos θt) (25)

H̄t =
E0T‖
η2

ŷe−jk2(x sin θt+z cos θt) (26)

where the subscript ‖ has been used to denote that the result was derived for an electric field
polarized parallel to the plane containing the rays. T‖ refers to the transmission coefficient from

medium 1 into media 2; k2 = ω
√
µ2ε2; and η2 =

√
µ2
ε2

.
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We now enforce boundary conditions at the interface, which we derived earlier. Most notably,
the tangential electric fields across the boundary must be continuous; likewise for the tangential
magnetic fields. Therefore, at z = 0,

cos θie
−jk1x sin θi + Γ‖ cos θrE

−jk1x sin θr = T‖ cos θte
−jk2x sin θt ; (27)

1

η1
e−jk1x sin θi −

Γ‖
η1
e−jk1x sin θr =

T‖
η2
e−jk2x sin θt (28)

Note that this set of equations must hold everywhere along the media interface; that is, they
must be invariant of x. Therefore, the arguments to the exponentials must all be equal (this is
called the phase matching condition:

−jk1x sin θi = −jk1x sin θr = −jk2x sin θt (29)

This results in two conditions:

θi = θr (30)

k1 sin θi = k2 sin θt (31)

which we immediate recognizes as Snell’s law of reflection and refraction. We are perhaps more
used to seeing Snell’s law of refraction written as

√
µ1ε1 sin θi =

√
µ2ε2 sin θt (32)

which is usually applied in dielectric materials (µ1 = µ2 = µ0), so that

√
ε1 sin θi =

√
ε2 sin θt. (33)

√
µε in general represents the refractive index of a medium.

The phase matching condition and law of reflection reduce Equations (27) and (28) to:

cos θi + Γ‖ cos θi = T‖ cos θt (34)

1

η1
−

Γ‖
η1

=
T‖
η2

(35)

Solving these equations simultaneously yields the following expressions for Γ‖ and T‖:

Γ‖ =
η2 cos θt − η1 cos θi
η2 cos θt + η1 cos θi

(36)

T‖ =
2η2 cos θi

η2 cos θt + η1 cos θi
(37)

Observe that there is a special angle of incidence where Γ‖ equals zero; that is, there is 100%
transmission from medium 1 into medium 2. This occurs at an incidence angle equal to the
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Brewster angle, which can be found by setting the numerator of the expression for Γ‖ to zero:

η2 cos θt = η1 cos θb‖ (38)

η2
η1

√
1− sin2 θt =

√
1− sin2 θb‖ (39)

η22
η21

(
1− k21

k22
sin2 θb‖

)
= 1− sin2 θb‖ (40)

µ2ε1
ε2µ1

− ε21
ε22

sin2 θb‖ = 1− sin2 θb‖ (41)

µ2ε1
ε2µ1

− 1 =

(
ε21
ε22
− 1

)
sin2 θb‖ (42)

In dielectric media, µ1 = µ2 = µ0, and

ε1
ε2
− 1 =

(
ε21
ε22
− 1

)
sin2 θb‖ (43)

The Brewster angle is then found using

sin θb‖ =
1√

1 + ε1/ε2
, (44)

or, re-arranging,

θb‖ = tan−1
√
ε2
ε1
. (45)

2.1.2 Perpendicular Polarization

In this case the electric field is polarized in the y-direction, or perpendicular to the plane containing
the incident, reflected, and refracted waves. The fields can be represented as:

Ēi = E0ŷ e
−jk1(x sin θi+z cos θi) (46)

H̄i =
E0

η1
(−x̂ cos θi + ẑ sin θi)e

−jk1(x sin θi+z cos θi (47)

Ēr = E0Γ⊥ŷE
−jk1(x sin θr−z cos θr) (48)

H̄r =
E0Γ⊥
η1

(x̂, cos θr + ẑ, sin θr)e
−jk1(x sin θr−z cos θr (49)

Ēt = E0T⊥ŷ e
−jk2(x sin θt+z cos θt) (50)

H̄t =
E0T⊥
η2

(−x̂ cos θt + ẑ sin θt)e
−jk2(x sin θt+z cos θt) (51)

where we observe the ⊥ subscript used in the reflection/transmission coefficients in this case.
Applying the boundary conditions and phase matching condition at the interface yields

Γ⊥ =
η2 cos θi − η1 cos θt
η2 cos θi + η1 cos θt

(52)

T⊥ =
2η2 cos θi

η2 cos θi + η1 cos θt
(53)
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Note that Snell’s law governing the angle of refraction and refraction is unchanged for perpendic-
ular polarization.

In dielectric media, for perpendicularly-polarized incident electric field, there is no Brewster angle
as in the case for parallel polarization. This would require

η2 cos θb⊥ = η1 cos θt (54)

which, after applying Snell’s law of refraction, would require

k22(η22 − η21) = (k22η
2
2 − k21η21) sin2 θb⊥ (55)

or

sin θb⊥ =

√
1− µ1ε2/µ2ε1

1− µ1/µ2

. (56)

Since dielectrics have µ1 = µ2 = µ0, k22η
2
2−k21η21 = 0 which makes the equation above impossible

to solve.

2.2 Reflection at Perfect Electrical Conductors

As you may recall, perfect electrical conductors have an reflection coefficient of Γ = −1. This
is readily pr oven for either polarization case. For a perfect electrical conductor (σ → ∞), the
intrinsic impedance of medium 2 becomes

lim
σ→∞

η2 = lim
σ→∞

√
jωµ

σ
= 0. (57)

Examining the expressions for reflection coefficient, we find that

Γ‖ = Γ⊥ = Γ = −1. (58)

2.3 Grazing Angles at a Dielectric Interface

An important observation can be made about reflection/refraction at dielectric media interfaces
with a very shallow angle of incidence. Basically, the incoming ray is nearly parallel to the surface
(such that it “grazes” the surface). As the angle of incidence (θi) approaches 90◦, we notice the
following:

lim
θi→90◦

Γ‖ =
η2 cos θt
η2 cos θt

= 1 (59)

lim
θi→0◦

Γ⊥ =
−η1 cos θt
η1 cos θt

= −1 (60)

Interestingly, the magnitude of the reflection coefficients is 1 for grazing angles. Therefore, we can
conclude that the magnitude of the reflections from a dielectric interface (even if the dielectrics are
perfect) are the same as those that would have been produced by replacing the second dielectric
with a perfect electrical conductor.

Prof. Sean Victor Hum Radio and Microwave Wireless Systems



Reflection/Refraction Page 9

This is a useful result because often, the antenna is only a short distance above the ground, but
the link distance is very large. Hence, grazing incident angles are produced and you get very good
reflection from the surface of the earth, regardless of its electrical properties. It is important to
note the subtle difference from the PEC case, however: the sign of the parallel reflection coefficient
is opposite to that obtained for the PEC case. We will see this has implications on how we treat
antennas over the earth, which in general is not a good conductor.
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