ECE422H1S LECTURE NOTES AUTHOR: PROF. SEAN V. HUM APPLYING FRIIS FORMULA—PAGE 1

Mars Pathfinder X-band Downlink Budget

Item	Symbol	Value (linear units)	Value (logarithmic units)
Transmit power	W_t	10 W	+10 dBW
Transmit antenna gain	G_t	251.1	+24.0 dBi
Effective isotropic radiated power	EIRP	2.51 kW	+34 dBw
Free space path loss	$\left(\frac{\lambda}{4\pi R}\right)^2$	220×10^{-30}	-276.6 dB
Received isotropic power	W_r/G_r	$554 \times 10^{-27} \text{ W}$	-242.6 dBW
Receive antenna gain	G_r	6.31×10^3	68.0 dBi
Power at receiver	W_r	$3.49 \times 10^{-18} \text{ W}$	-174.6 dBW or -144.6 dBm

Details

Item	Value
Operating frequency	8420 MHz
Mars-Earth distance as of 4-Jul-97	$191 \times 10^6 \text{ km}$

The operating wavelength is c/f = 3.56 cm, which is used in the path loss calculation.

To put things in perspective, a standard cellular phone would require approximately -100 dBm of received power to even properly recover a signal. The NASA receiver is obviously much more sensitive (approximately 45 dB more sensitive, or 31,600 times as sensitive).

The NASA Deep Space Network uses a series of large reflector antennas to receive signals from distance probes. The antenna uses here was a 34 m reflector antenna. An ideal aperture of this area would produce $D=\frac{4\pi}{\lambda^2}(\pi\cdot 17^2)=69.5$ dBi of gain. Most reflectors have an aperture efficiency of 70%, so after you account for this the gain shown in the table matches well with this simple calculation.

Reference: http://www.ka9q.net/mpf_budget.html