Dynamic Reconfiguration of Plasmonic Reflectarrays Using Graphene:

A Review of the Research Led by Prof. Perruisseau-Carrier

Eduardo Carrasco¹, Michele Tamagnone^{2,3}, Tony Low^{4,5}, Juan R. Mosig³

¹ Formerly with the Adaptive MicroNano Wave Systems group, (EPFL), currently Antenna Consultant, Spain/Switzerland

² Adaptive MicroNano Wave Systems group, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

³ Laboratory of Electromagnetics and Acoustics (LEMA), Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

⁴ Department of Physics & Electrical Engineering, Columbia University, USA

⁵ Department of Electrical & Computer Engineering, University of Minnesota, USA

e.carrasco@ieee.org, michele.tamagnone@epfl.ch, tonyaslow@gmail.com, juan.mosig@epfl.ch

UNIVERSITY OF MINNESOTA

In Memoriam of Julien Perruisseau-Carrier

- Julien focused his research effort on frontier and interdisciplinary studies related to electromagnetic waves, from microwave to mid-Infrared. He made significant contributions to the field of reconfigurable antennas.
- We would like to recognize the significant contributions of Julien to the field of reflectarray antennas, specifically with multireconfiguration (spatial, frequency and/or polarization), by using semiconductors, MEMS, dielectric elastometer actuators and graphene.
- This presentation summarizes some of the work led by Julien in the field of reflectarrays based on graphene.

Graphene, the 2-D material

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Julien was very enthusiastic about using graphene to implementing reconfiguration in reflectarray type antennas.

- Graphene is the 2D (one-atom thick) crystalline form of carbon, arranged in hexagons. Called "semi-metal" or zero-gap semiconductor"
- □ Very slow waves (plasmonic modes) → Extreme miniaturization
- □ *Monolithic integration* with graphene nanoelectronics
- □ Transparent at optical frequencies
- □ Tunable via electric and magnetic field
- □ Fabrication:
 - Small area (mm-mm) exfoliation
 - High quality
 - Larger area (> cm) chemical vapor deposition (CVD)
 - Enable much larger devices:

Solar cells, displays, transparent electrodes, *reflectarrays!*

Plasmonic Modes in Graphene at THz and IR

Graphene surface conductivity:

TM plasmon on graphene strip :

Graphene Conductivity Modelling

Kubo formula

L. Falkovsky and S. Pershoguba, Phys. Rev. B76, 153410 (2007)

q _e :	electron charge
k _B :	Boltzmann constant
h:	reduced Planck constant
f _d (∈):	Fermi distribution

COLUMBIA UNIVERSITY

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Plasmonic arrays (Varying size patch, fixed μ_c)

- <u>Fixed-beam</u> reflectarray at THz using graphene: <u>unit cell</u>
 - Plasmonic \rightarrow extremely miniaturized element
 - At least 290° of phase-shift by varying patch size

Important reduction in size!

Plasmons at much lower frequencies than metal!

Plasmonic arrays (Varying size patch, fixed μ_c)

Fixed-beam reflectarray at THz using graphene: whole array

GOLD

THz feed

Dynamic Reconfiguration (1.3 THz)

- <u>Reconfigurable-beam</u>: fixed-size elements but each cell independent control of chemical potential
 - Design patch for best behaviour when chemical potantial is varied

Dynamic Reconfiguration (1.3 THz)

Patch Size (µм)	Parameter	Chemical Potential		
		0.00 (eV)	0.19 (eV)	0.52 (eV)
3.5	R (Ω):	8854	799	287.5
	L (pH):	3495	803	294
	C (fF):	0.006	0.004	0.005
7.0	R (Ω):	1861	214	72.5
	L (pH):	862.1	208.9	75.07
	C (fF):	0.068	0.042	0.042
10.0	R (Ω):	861	122.5	35.4
	L (pH):	435	99.69	36.22
	C (fF):	0.148	0.137	0.133
14.0	R (Ω):	236	44.52	16.27
	L (pH):	235	44.44	16.24
	C (fF):	Very high	Very high	Very high

Equivalent circuit, where the graphene patch between two stratified media (air-quartz) is represented as an RLC circuit in parallel with the grounded substrate and referred to the intrinsic impedance of air.

COLUMBIA UNIVERSITY

Laser beam impinging with θ_i =-45°.

Array profile optimized for bending the beam towards $\theta_r = 0^\circ$ if $\mu_c = \mu_{c1} = 1.0 \text{eV}$ (A progressive phase-shift in reflection is produced along the array).

The progressive phase-shift disappears if chemical potential is adjusted to $\mu c = \mu_{c2} = 0.3 \text{ eV}$. The beam is bend towards the specular direction $\theta_r = 45^\circ$ (A constant phase in reflection is produced along the whole surface of the array).

Why?

- □ Full vectorial scattering matrix
- ☐ Floquet's boundaries assumption
- □ Angle of incidence taken into account
- Gaussian beam incidence

Far-Field Bent Beams

Continuos steering is possible using independent biasing for each nanoribbon or at least for some groups

Far-Field Bent Beams (Graphene Loss Impact)

In Memoriam of Julien Perruisseau-Carrier

253

□ The work led by Julien in the field of graphene-based reflectarrays has been published in the following journal papers, one of them posthumously and dedicated to his memory :

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 12, 2013

Reflectarray Antenna at Terahertz Using Graphene

Eduardo Carrasco, Member, IEEE, and Julien Perruisseau-Carrier, Member, IEEE

APPLIED PHYSICS LETTERS 102, 104103 (2013)

Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection

Eduardo Carrasco,^{a)} Michele Tamagnone, and Julien Perruisseau-Carrier^{a)} Adaptive MicroNano Wave Systems, LEMA/Nanolab, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

OP Publishing

Nanotechnology

Nanotechnology 26 (2015) 134002 (7pp)

doi:10.1088/0957-4484/26/13/134002

Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array

Eduardo Carrasco^{1,5}, Michele Tamagnone^{1,2,5}, Juan R Mosig², Tony Low^{3,4} and Julien Perruisseau-Carrier¹

In Memoriam of Julien Perruisseau-Carrier

□ Just a part of the contributions of Julien to the field of graphenebased devices. His wide expertise in the graphene field will be covered in other presentations:

Pros and cons of patterning graphene layers, Arya Fallahi (Later in this session).

Theoretical Limits of Graphene Terahertz Non Reciprocal Devices, Michele Tamagnone (Today, 17:30).

Acknowledgment

The work was supported by European Union (FP7) under grant 300934 (IEF Marie-Curie Project RASTREO), by the Swiss National Science Foundation (SNSF) under grant 133583, by the Hasler Foundation project 11149. and by the University of Minnesota

Dynamic Reconfiguration of Plasmonic Reflectarrays Using Graphene:

A Review of the Research Led by Prof. Perruisseau-Carrier

Eduardo Carrasco¹, Michele Tamagnone^{2,3}, Tony Low^{4,5}, Juan R. Mosig³

¹ Formerly with the Adaptive MicroNano Wave Systems group, (EPFL), currently Antenna Consultant, Spain/Switzerland

² Adaptive MicroNano Wave Systems group, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

³ Laboratory of Electromagnetics and Acoustics (LEMA), Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

⁴ Department of Physics & Electrical Engineering, Columbia University, USA

⁵ Department of Electrical & Computer Engineering, University of Minnesota, USA

e.carrasco@ieee.org, michele.tamagnone@epfl.ch, tonyaslow@gmail.com, juan.mosig@epfl.ch

UNIVERSITY OF MINNESOTA