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 Julien focused his research effort on frontier and 

interdisciplinary studies related to electromagnetic waves, from 

microwave to mid-Infrared. He made significant contributions to 

the field of reconfigurable antennas. 

 

 We would like to recognize the significant contributions of Julien 

to the field of reflectarray antennas, specifically with multi-

reconfiguration (spatial, frequency and/or polarization), by using 

semiconductors, MEMS, dielectric elastometer actuators and 

graphene.  

 

 This presentation summarizes some of the work led by Julien in 

the field of reflectarrays based on graphene.  

In Memoriam of  

Julien Perruisseau-Carrier 



3 

Graphene, the 2-D material 

 

 Graphene is the 2D (one-atom thick) crystalline form of carbon, 

arranged in hexagons. Called “semi-metal” or zero-gap 

semiconductor” 
 

 Very slow waves (plasmonic modes)  Extreme miniaturization 
 

 Monolithic integration with graphene nanoelectronics 
 

 Transparent at optical frequencies 
 

 Tunable via electric and magnetic field 
 

 Fabrication:  

- Small area (mm-mm) exfoliation 

• High quality 

- Larger area (> cm) chemical vapor deposition (CVD) 

• Enable much larger devices:  

Solar cells, displays, transparent electrodes, 

reflectarrays! 

Julien was very enthusiastic about using graphene to 

implementing reconfiguration in reflectarray type antennas. 
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TM plasmon on graphene strip :  

Im[s]< 0  

Graphene surface conductivity: 
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Graphene sheet 

(Top view) 

(Transversal  view) 

Plasmonic modes on graphene: 

Im[s]< 0  (or Im[ZS]> 0) 

 plasmons! 

@ lower frequency than metals 

Plasmonic Modes in Graphene at THz and IR 
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qe : electron charge 

kB : Boltzmann constant 

h : reduced Planck constant 

fd(): Fermi distribution 

 Kubo formula 

Intraband term Interband term 
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L. Falkovsky and S. Pershoguba, Phys. Rev. B76, 153410 (2007) 

Chemical potential, c, (E field bias)  applied voltage  

Scattering rate, =1/2,  : relaxation time  graphene quality 

Temperature 

Graphene Conductivity Modelling 
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 Fixed-beam reflectarray at THz using graphene: unit cell 

– Plasmonic   extremely miniaturized element  

– At least 290° of phase-shift  by varying patch size 
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hquartz=25 m 

(r=3.75 tan=0.0184 @ 1.3THz) 

µc=0.19eV 

Plasmonic arrays (Varying size patch, fixed c ) 

Important reduction in size! 

 

Plasmons at much lower frequencies than metal! 



 Fixed-beam reflectarray at THz using graphene: whole array 
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Au 11% 

Graphene 15% 

Plasmonic arrays (Varying size patch, fixed c ) 
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 Reconfigurable-beam: fixed-size elements but each cell independent control of 

chemical potential 
– Design patch for best behaviour when chemical potantial is varied 
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Dynamic Reconfiguration (1.3 THz) 
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 Equivalent circuit, where the graphene patch between two stratified media (air-quartz) 

is represented as an RLC circuit in parallel with the grounded substrate and referred 

to the intrinsic impedance of air.  
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Dynamic Reconfiguration (1.3 THz) 
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ground plane 

substrate  

aperiodic array of nanoribbons 

(graphene) 

superstrate  

Working frequency: 27 THz (900 cm-1) 

 

Number of elements: 224 nanoribbons 

 

Separation between nanoribbons: p=140 nm 

 

Width variation: from w=40 nm to w=140 nm 

 

Width optimization for c1=1.0 eV 

biasing source 
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 Patches are replaced by aperiodic nanoribbons (bending in XZ plane) 

 Biasing between graphene and a new superstrate 

Width profile along the array 
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Laser beam impinging with i=-45°. 

Array profile optimized for bending the 

beam towards r=0° if c=c1=1.0eV  

(A progressive phase-shift in reflection 

is produced along the array).  

The progressive phase-shift 

disappears if chemical potential is 

adjusted to c=c2=0.3eV. The beam 

is bend towards the specular direction 

r=45° (A constant phase in reflection 

is produced along the whole surface 

of the array). 

Why? 
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Dynamic Beam-Bending Array (Mid-Infrared) 
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Dynamic Beam-Bending Array (Mid-Infrared) 
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Continuos steering is possible using independent biasing for 

each nanoribbon or at least for some groups  

Far-Field Bent Beams (Middle states) 



16 

 

 

v
 =

 s
in

 
 s

in
 

u = sin  cos 
-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-5

0

5

10

15

20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

-360

-270

-180

-90

0


c
 (eV)

P
h

a
s
e

 (
d

e
g

)
 

 

v
 =

 s
in

 
 s

in
 

-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

u = sin  cos 

-5

0

5

10

15

20

Impact of  

graphene losses? 

Average loss: 1.6 dB 

Very moderate value at this frequency! 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
-15

-10

-5

0


c
 (eV)

A
m

p
lit

u
d
e
 (

d
B

)

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70
-15

-10

-5

0

5

10

15

20

Elevation (deg)
G

a
in

 (
d

B
)

 

 

Ideal 0°

Ideal 45°

Graphene 0°

Graphene 45°

Far-Field Bent Beams (Graphene Loss Impact) 



17 

 The work led by Julien in the field of graphene-based reflectarrays 

has been published in the following journal papers, one of them 

posthumously and dedicated to his memory :  

In Memoriam of  

Julien Perruisseau-Carrier 
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 Just a part of the contributions of Julien to the field of graphene-

based devices. His wide expertise in the graphene field will be 

covered in other presentations: 

 

 Pros and cons of patterning graphene layers, Arya Fallahi (Later in this 

session). 
 

 Theoretical Limits of Graphene Terahertz Non Reciprocal Devices, 

Michele Tamagnone (Today, 17:30). 

In Memoriam of  

Julien Perruisseau-Carrier 
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