Structure-Preserving Reduction of Finite-Difference Time-Domain Equations with Controllable Stability Beyond the CFL Limit

Xihao Li, Student Member, IEEE, Costas D. Sarris, Senior Member, IEEE, and Piero Triverio, Member, IEEE

Abstract—The timestep of the Finite-Difference Time-Domain method (FDTD) is constrained by the stability limit known as the Courant-Friedrichs-Lewy (CFL) condition. This limit can make FDTD simulations quite time consuming for structures containing small geometrical details. Several methods have been proposed in the literature to extend the CFL limit, including implicit FDTD methods and filtering techniques. In this paper, we propose a novel approach which combines model order reduction and a perturbation algorithm to accelerate FDTD simulations beyond the CFL barrier. We compare the proposed algorithm against existing implicit and explicit CFL extension techniques, demonstrating increased accuracy and performance on a large number of test cases, including resonant cavities, a waveguide structure, a focusing metascreen and a microstrip filter.

Index Terms—Finite difference time domain (FDTD), model order reduction, numerical stability.

I. INTRODUCTION

The Finite-Difference Time-Domain method (Yee’s FDTD) is one of the most popular algorithms for solving Maxwell’s equations [1]. Standard FDTD updates electric and magnetic field values with a leap-frog scheme which ensures second-order accurate approximations of time and spatial derivatives. A remarkable feature of FDTD is that it avoids expensive matrix inversions due to an explicit discretization of time derivatives. As a consequence, FDTD timestep is constrained by the Courant-Friedrichs-Lewy (CFL) stability condition [1]

$$\Delta t < \frac{1}{c \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}},$$

where c is the wave velocity in the medium and Δx, Δy, Δz denote the cell size in the three dimensions. Limit (1) dictates a very small timestep in problems containing small geometric features relative to the wavelength. In such cases, both the large number of unknowns and the small timestep can make FDTD simulations very time consuming.

The CFL limit can be overcome in several ways. Implicit methods are unconditionally stable for any timestep, but require matrix inversions [2], [3], [4]. The direct use of implicit techniques is prohibitive even for medium-size problems. Model order reduction (MOR) has been used to reduce the computational complexity of an implicit approach in combination with subgridding [5], [6]. The Alternating-Direction-Implicit FDTD (ADI-FDTD) [7], [8] has been proposed in an attempt to maintain some of the efficiency of explicit FDTD while ensuring unconditional stability. ADI-FDTD splits the time stepping process into implicit and explicit half steps, thus guaranteeing unconditional stability [7]. This step incurs additional computational costs, although partially mitigated through the use of a larger timestep.

Recently, alternative methods to overcome the CFL limit have been proposed. In spatial filtering [9], unstable harmonics that arise above the CFL limit are removed at runtime using a Fast Fourier Transform and low-pass filtering. This approach is simple to implement, but requires special care at material boundaries to avoid aliasing in the Fourier transform process. In [10], [11], stable FDTD simulations beyond the CFL limit have been obtained by first running a short FDTD simulation at a stable timestep, in order to identify the dominant and stable eigenmodes of the structure. This information is then used to remove the unstable modes from the FDTD equations and run above the CFL limit.

In this paper, we propose a new way to accelerate FDTD simulations beyond the CFL limit, combining model order reduction and eigenvalue perturbation. Model order reduction is applied to FDTD equations to reduce their order. For a timestep below the CFL limit, we prove that the reduced model is stable by construction, differently from our previous approach [12]. For timesteps above the CFL limit, we propose a perturbation algorithm to enforce late time stability. The reduction process and the extension of the stability limit make the proposed technique faster than standard FDTD, with very small loss of accuracy. Moreover, the proposed reduction process preserves the structure of the original FDTD equations, making the reduced model easy to integrate in an existing FDTD code.

The paper makes the following two contributions:

1) we show how the CFL limit can be extended without having to perform time-consuming filtering operations at runtime, as in spatial filtering [9], or having to identify the dominant eigenmodes of the structure with a pre-processing step that requires careful monitoring of convergence [10], [11];

2) we propose a model order reduction method for FDTD equations that works directly in the discrete time do-
main, as opposed to previous methods that worked in the continuous time domain [5], [6], [2]. This approach makes the enforcement of late time stability straightforward, and preserves the structure of FDTD equations, differently from our previous method [12].

Some preliminary results from the proposed approach were presented without proofs in [13]. In this paper, a complete derivation with proofs is provided, together with new ideas for an optimal implementation that make the method scalable to 3D simulations.

The paper is organized as follows. In Sec. II, we cast FDTD equations in matrix form and develop the proposed reduction algorithm. We also prove that the reduced model is stable by construction for timesteps below the CFL limit. Sec. III shows how stability can be enforced for timesteps above the CFL limit. In Sec. IV, we discuss implementation details. Finally, in Sec. V we apply the proposed method to five test structures, demonstrating its excellent accuracy, computational efficiency, and scalability to 3-D problems of practical interest.

II. STABILITY-PRESERVING MODEL ORDER REDUCTION OF FDTD EQUATIONS

A. Matrix Formulation of FDTD Equations

We start from Yee’s FDTD equations [1] that, in one dimension, read

\[
\left(\frac{\epsilon}{\Delta t} + \frac{\sigma_e}{2} \right) E^{n+1}_k = \left(\frac{\epsilon}{\Delta t} - \frac{\sigma_e}{2} \right) E^n_k - \frac{1}{\Delta z} \left(H^{n+\frac{1}{2}}_{k+\frac{1}{2}} - H^{n+\frac{1}{2}}_{k-\frac{1}{2}} \right) - J^{n+\frac{1}{2}}_k, \tag{2a}
\]

\[
\left(\frac{\mu}{\Delta t} + \frac{\sigma_m}{2} \right) H^{n+\frac{1}{2}}_k = \left(\frac{\mu}{\Delta t} - \frac{\sigma_m}{2} \right) H^{n}_{k+\frac{1}{2}} + \frac{1}{\Delta z} \left(E^{n+1}_k - E^{n+1}_{k+1} \right), \tag{2b}
\]

While, for the sake of readability, we stated FDTD equations in 1-D, all results presented in the paper are valid in the general 3-D case. In (2a)-(2b), \(E^n_k \) denotes the electric field at time \(n \) and position \(k \), while \(H^{n+\frac{1}{2}}_{k\pm\frac{1}{2}} \) denotes the magnetic field. With \(\epsilon, \mu, \sigma_e, \) and \(\sigma_m \), we denote permittivity, permeability, electric conductivity, and magnetic conductivity, respectively. Terms \(J^{n+\frac{1}{2}}_k \) and \(M^{n+1}_{k\pm\frac{1}{2}} \) denote electric and magnetic sources.

FDTD equations can be arranged into matrix form [14]

\[
\begin{bmatrix}
\frac{\epsilon}{\Delta t} + \frac{\sigma_e}{2} & -\frac{\epsilon}{\Delta t} + \frac{\sigma_e}{2} \\
-\frac{\mu}{\Delta t} & \frac{\mu}{\Delta t} + \frac{\sigma_m}{2}
\end{bmatrix}
\begin{bmatrix}
E^{n+1}_k \\
H^{n+\frac{1}{2}}_k
\end{bmatrix}
= \begin{bmatrix}
D_{\epsilon e} & 0 \\
0 & D_{\sigma_m}
\end{bmatrix}
\begin{bmatrix}
E^n_k \\
H^n_{k\pm\frac{1}{2}}
\end{bmatrix}
+ \begin{bmatrix}
Bu^{n+1}
\end{bmatrix}
\]

(3)

where:

- \(D_{\epsilon} \) and \(D_{\mu} \) are diagonal matrices containing the electric permittivity and magnetic permeability value for each cell;
- \(D_{\sigma_e} \) and \(D_{\sigma_m} \) are diagonal matrices containing the electric and magnetic conductivity values for each cell;
- matrix \(K \) arises from the discretization of the curl operators in Maxwell’s equations, and contains terms in the form \(\pm 1/(\Delta x) \), \(\pm 1/(\Delta y) \), \(\pm 1/(\Delta z) \);
- vector \(u^{n+1} \) includes all sources;
- matrix \(B \) contains 1’s corresponding to electric and magnetic source locations.

Representation (3) holds for general 3D problems, with non-uniform material properties and a non-uniform Cartesian grid [14]. To compact the notation, we rewrite (3) as [14]

\[
(R + F)x^{n+1} = (R - F)x^n + Bu^{n+1}, \tag{4}
\]

with

\[
R = \begin{bmatrix}
\frac{\epsilon}{\Delta t} D_{\epsilon e} & -\frac{\mu}{\Delta t} K^T \\
-\frac{\mu}{\Delta t} K & \frac{\mu}{\Delta t} D_{\sigma_m}
\end{bmatrix},
\]

\[
F = \begin{bmatrix}
\frac{1}{2} D_{\sigma_e} & \frac{1}{2} K \\
-\frac{1}{2} K^T & -\frac{1}{2} D_{\sigma_m}
\end{bmatrix}.
\]

and where

\[
x^n = \begin{bmatrix}
E^n_k \\
H^{n+\frac{1}{2}}_k
\end{bmatrix}
\]

(6)

is a vector of size \(N = N_e + N_h \), where \(N_e \) is the number of electric field unknowns, and \(N_h \) is the number of magnetic field unknowns.

B. Stability Conditions

Written in form (4), a system of FDTD equations can be interpreted as a discrete time system with input \(u^{n+1} \) and state \(x^n \). The stability of the FDTD system (4) is controlled by the eigenvalues \(\lambda_i \) of the update matrix [14]

\[
(R + F)^{-1}(R - F)
\]

that must be all inside or on the boundary of the unit circle in the complex plane [14], [15]

\[
|\lambda_i| \leq 1 \quad \forall i.
\]

The eigenvalues \(\lambda_i \) of the update matrix are equal to the poles of the discrete time system (4). In [14], it is shown that the following two inequalities are equivalent to (8)

\[
F^T + F = \begin{bmatrix}
D_{\epsilon e} & 0 \\
0 & D_{\sigma_m}
\end{bmatrix} \geq 0, \tag{9}
\]

\[
R = \begin{bmatrix}
\frac{\epsilon}{\Delta t} D_{\epsilon e} & -\frac{\mu}{\Delta t} K^T \\
-\frac{\mu}{\Delta t} K & \frac{\mu}{\Delta t} D_{\sigma_m}
\end{bmatrix} > 0, \tag{10}
\]

where \(\geq 0 \) denotes a positive semidefinite matrix, and \(> 0 \) denotes a positive definite matrix. A symmetric matrix \(A \) is positive definite if for any vector \(x \neq 0 \) we have \(x^T A x > 0 \). It is positive semidefinite if \(x^T A x \geq 0 \). Conditions (9) and (10) were proposed in [14] and have an intuitive physical explanation. Inequality (9) simply requires all conductivities to be positive. Inequality (10) can be shown [14] to be equivalent to the CFL limit (1) and limits the maximum timestep \(\Delta t \) that can be used in a stable FDTD simulation.

C. Model Order Reduction

We now reduce FDTD equations (4) using the SPRIM model order reduction technique [16]. Firstly, from the matrices in (4), we generate a projection matrix

\[
V = \begin{bmatrix}
V_1 & 0 \\
0 & V_2
\end{bmatrix}
\]

(11)

using the robust Arnoldi process [16], [17]. Matrices \(V_1 \) and \(V_2 \) are orthonormal and of size \(N_e \times N_e \) and \(N_h \times N_h \), respectively.
respectively, with \(\tilde{N} \) much smaller than \(N_c \) and \(N_p \). Then, we approximate the full vector of unknowns \(\mathbf{x} \) with a reduced vector \(\tilde{\mathbf{x}} \) as
\[
\mathbf{x} \approx V \tilde{\mathbf{x}}^{|n+1} \quad (12)
\]
Substituting (12) into (4), and multiplying on the left by \(V \), we obtain
\[
V^T (\mathbf{R} + \mathbf{F}) V \tilde{\mathbf{x}}^{|n+1} = V^T (\mathbf{R} - \mathbf{F}) V \tilde{\mathbf{x}}^{|n} + V^T \mathbf{B} \mathbf{u}^{|n} \quad (13)
\]
and, after carrying out matrix multiplications,
\[
(\tilde{\mathbf{R}} + \tilde{\mathbf{F}}) \tilde{\mathbf{x}}^{|n+1} = (\tilde{\mathbf{R}} - \tilde{\mathbf{F}}) \tilde{\mathbf{x}}^{|n} + \tilde{\mathbf{B}} \mathbf{u}^{|n}, \quad (14)
\]
where \(\tilde{\mathbf{R}} = V^T \mathbf{R} V \), \(\tilde{\mathbf{F}} = V^T \mathbf{F} V \) and \(\tilde{\mathbf{B}} = V^T \mathbf{B} \) are “compressed” versions of \(\mathbf{R} \), \(\mathbf{F} \) and \(\mathbf{B} \), respectively. The order of (14) is \(2\tilde{N} \), which is much lower than then order \(N \) of the original system (4). The reduced model order and, consequently, its accuracy, can be controlled by choosing the number of columns \(\tilde{N} \) of the projection matrices \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \) generated by the Arnoldi algorithm. Due to the small size, (14) can be solved very quickly to find the reduced unknowns \(\tilde{\mathbf{x}} \). Once \(\tilde{\mathbf{x}} \) is available, the fields at any point in the system are computed through (12).

Using (5) and (12), the matrices in (14) can be written as
\[
\tilde{\mathbf{R}} = \begin{bmatrix}
\frac{1}{\Delta t} \tilde{\mathbf{D}}_{e} & -\frac{1}{2} \tilde{\mathbf{K}} \\
-\frac{1}{2} \tilde{\mathbf{K}}^T & -\frac{1}{\Delta t} \tilde{\mathbf{D}}_{\mu}
\end{bmatrix}, \quad \tilde{\mathbf{F}} = \begin{bmatrix}
\frac{1}{2} \tilde{\mathbf{D}}_{\sigma_e} & \frac{1}{2} \tilde{\mathbf{K}} \\
\frac{1}{2} \tilde{\mathbf{K}}^T & \frac{1}{\Delta t} \tilde{\mathbf{D}}_{\sigma_m}
\end{bmatrix}, \quad (15)
\]
where
\[
\begin{align*}
\tilde{\mathbf{D}}_{e} & = V_1^T \mathbf{D}_e V_1 \\
\tilde{\mathbf{D}}_{\sigma_e} & = V_1^T \mathbf{D}_{\sigma_e} V_1 \\
\tilde{\mathbf{D}}_{\mu} & = V_2^T \mathbf{D}_\mu V_2 \\
\tilde{\mathbf{D}}_{\sigma_m} & = V_2^T \mathbf{D}_{\sigma_m} V_2 \\
\tilde{\mathbf{K}} & = V_1^T \mathbf{K} V_2
\end{align*} \quad (16)\quad (17)\quad (18)
\]
Owing to the block-diagonal nature of the projection matrix (11), the reduced matrices (15) have exactly the same block structure of the original FDTD matrices (5). Blocks (16)-(18) are compressed counterparts of the original permittivity, permeability, conductivity and “curl” matrices. Although, after the reduction process these blocks are full, they can be easily diagonalized, since their size is small. Therefore, the reduction process preserved the structure of the original FDTD equations (4), which is a novel result. Being in the same form as FDTD equations, the solution of (14) can be computed in a leap-frog manner, for increased efficiency.

D. Stability Preservation Below the CFL Limit

We now discuss the stability of the reduced model (14). First, we consider the case when \(\Delta t \) is below the CFL limit of the original FDTD equations, showing that the obtained reduced model is stable by construction. Since we have preserved the structure of the FDTD equations, stability conditions (9) and (10) can be also applied to the reduced model
\[
\tilde{\mathbf{F}}^T + \tilde{\mathbf{F}} \geq 0 \quad (19)
\]
\[
\tilde{\mathbf{R}} > 0 \quad (20)
\]
The first condition can be rewritten as
\[
\tilde{\mathbf{F}}^T + \tilde{\mathbf{F}} = \begin{bmatrix} \mathbf{V}_1 & 0 \\ 0 & \mathbf{V}_2 \end{bmatrix}^T (\mathbf{F}^T + \mathbf{F}) \begin{bmatrix} \mathbf{V}_1 & 0 \\ 0 & \mathbf{V}_2 \end{bmatrix} \geq 0. \quad (21)
\]
Since the original model (4) satisfies (9), the last expression in (21) is positive semidefinite by construction, as it is the congruence of a positive semidefinite matrix [18]. Similarly, since \(\mathbf{R} > 0 \) because of (10), and \(\mathbf{V} \) is full rank, we have
\[
\tilde{\mathbf{R}} = \begin{bmatrix} \mathbf{V}_1 & 0 \\ 0 & \mathbf{V}_2 \end{bmatrix}^T \mathbf{R} \begin{bmatrix} \mathbf{V}_1 & 0 \\ 0 & \mathbf{V}_2 \end{bmatrix} > 0 \quad (22)
\]
Therefore, the proposed approach preserves stability by construction, avoiding the need for an additional post-processing step to enforce its stability as in [12].

III. STABILITY ENFORCEMENT ABOVE THE CFL LIMIT
A. Theoretical Derivation

If the chosen \(\Delta t \) is beyond the CFL limit of the original FDTD equations, conditions (9) and (10) will be violated and reduced model (14) may contain unstable eigenvalues. However, due to its small size, its stability can be easily enforced, effectively breaking the CFL barrier. From stability criteria (9) and (10), we see that changing \(\Delta t \) will only affect the second condition, since the first one does not depend on \(\Delta t \). In order to make the reduced model stable, we need to enforce
\[
\tilde{\mathbf{R}} = \begin{bmatrix}
\frac{1}{\Delta t} \tilde{\mathbf{D}}_{e} & -\frac{1}{2} \tilde{\mathbf{K}} \\
-\frac{1}{2} \tilde{\mathbf{K}}^T & -\frac{1}{\Delta t} \tilde{\mathbf{D}}_{\mu}
\end{bmatrix} > 0, \quad (23)
\]
which can be achieved by perturbing \(\tilde{\mathbf{K}} \) as follows. Using the Schur complement [19], we can state two conditions equivalent to (23)
\[
\begin{align*}
\frac{1}{\Delta t} \tilde{\mathbf{D}}_{\mu} & > 0 \\
\frac{1}{\Delta t} \tilde{\mathbf{D}}_{e} - \frac{\Delta t}{4} \tilde{\mathbf{K}} \tilde{\mathbf{D}}_{\mu}^{-1} \tilde{\mathbf{K}}^T & > 0
\end{align*} \quad (24)\quad (25)
\]
It can be seen that (24) always holds, while (25) is the only source of potential instability at refined CFL numbers. Rearranging terms in (25), we arrive at the following inequality
\[
(\tilde{\mathbf{D}}_{e}^{-1} \tilde{\mathbf{K}} \tilde{\mathbf{D}}_{\mu}^{-1} \tilde{\mathbf{K}})^T (\tilde{\mathbf{D}}_{e}^{-1} \tilde{\mathbf{K}} \tilde{\mathbf{D}}_{\mu}^{-1} \tilde{\mathbf{K}}^T) < \frac{4}{\Delta t^2} \mathbf{I}. \quad (26)
\]
If we denote the singular values [18] of \(\tilde{\mathbf{D}}_{e}^{-1} \tilde{\mathbf{K}} \tilde{\mathbf{D}}_{\mu}^{-1} \) as \(\sigma_i \) for \(i = 1, \ldots, \tilde{N} \), we have that (26) holds if and only if [14]
\[
\sigma_i < \frac{2}{\Delta t} \text{ for } i = 1, \ldots, \tilde{N}. \quad (27)
\]
Above the CFL limit, some singular values \(\sigma_i \) may violate (27), and make the reduced model unstable. In order to enforce its stability, we propose the following procedure:

1) Compute the singular value decomposition [18]
\[
\tilde{\mathbf{D}}_{e}^{-1} \tilde{\mathbf{K}} \tilde{\mathbf{D}}_{\mu}^{-1} = \mathbf{USW}^T, \quad (28)
\]
where \(\mathbf{S} \) is a diagonal matrix containing the singular values \(\sigma_i \). This operation is cheap since it is performed on a matrix of size \(\tilde{N} \times \tilde{N} \). Among the five test cases
of Sec. V, the largest \(\tilde{N} \) is used for the waveguide filter, where we have \(N = 100 \). The SVD decomposition of a \(100 \times 100 \) matrix takes less than 20 ms on a 2.7 GHz CPU.

2) Perturb the singular values \(\sigma_i \) which exceed (27)

\[
\sigma_i' = \begin{cases}
\sigma_i & \text{if } \sigma_i < \gamma \frac{2}{\Delta t} \\
\gamma \frac{2}{\Delta t} & \text{otherwise}
\end{cases}
\]

(29)

where \(\gamma \) is slightly less than one. In the examples of Sec. V, we used \(\gamma = 0.9999 \). Form a new diagonal matrix \(\tilde{S}' \) with the perturbed singular values \(\sigma_i' \).

3) Obtain the perturbed \(\tilde{K}' \) matrix

\[
\tilde{K}' = \tilde{D}_1^{-1} \tilde{U} \tilde{S}' \tilde{W}^T \tilde{D}_2^{-1}
\]

and replace \(\tilde{K} \) with \(\tilde{K}' \) in (15).

This procedure leads to a reduced model which satisfies (19) and (20) by construction, and is thus stable for a timestep above the CFL limit. Numerical tests, presented in Sec. V, will show that the proposed reduction and perturbation process results in a very small error compared to a standard FDTD, of the order of 1%. This finding is consistent with previous works that demonstrated that the CFL limit can be extended without impairing accuracy [9], [10], [11], [12]. However, in the proposed method, the CFL limit is extended without resorting to an implicit formulation or filtering operations at runtime [9], which reduce computational efficiency.

B. Demonstration of Stability Enforcement

We illustrate the proposed stability enforcement method on a simple example. We consider a \(1 \times 1 \times 1 \) m PEC cavity discretized with a 3-D FDTD grid with cell size \(\Delta = 0.1 \) m along each dimension. We let the excitation be a Gaussian pulse with a maximum frequency of 0.3 GHz, which leads to an effective \(\lambda/\Delta \) of 10 at 0.3 GHz. There are two resonant frequencies within the excitation bandwidth, one at 0.21199 GHz and one at 0.25963 GHz. Fig. 1 plots the eigenvalues of (4) for \(s = 0.99 \) and \(s = 1.98 \). With \(s \), we denote the CFL extension factor

\[
s = \frac{\Delta t}{\Delta t_{\text{max}}},
\]

(30)

where \(\Delta t_{\text{max}} \) is the maximum timestep compatible with the CFL limit (1). In the first case, timestep is below the CFL limit and all eigenvalues fall inside the unit circle, as shown in the left panel of Fig. 1. In the second case, since the timestep violates the CFL constraint, some eigenvalues move into the unstable region as shown in Fig. 1, right panel. We therefore apply the stability enforcement procedure of Sec. III-A, perturbing the \(K \) matrix in (4). Fig. 2 shows the eigenvalues of the perturbed system which are all stable since they fall on the unit circle.

In this example, due to the small size of the problem, we have enforced stability directly on the original FDTD equations. For larger problems, such as those that will be presented in Sec. V, enforcement will be performed after the size of the problem has been reduced through model order reduction.

IV. PRACTICAL IMPLEMENTATION

In this Section, we discuss how the proposed method has been implemented for maximum computational efficiency.

A. Complex Frequency Hopping

SPRIM [16], like all order reduction methods based on moment matching, generates a reduced model accurate near a given expansion point in the complex frequency plane. As the order of the reduced model is increased through \(\tilde{N} \), the bandwidth of validity of the reduced model around the expansion point grows. In terms of eigenvalues, as \(\tilde{N} \) increases, more and more eigenvalues of the original system will be matched by the reduced model eigenvalues, starting from those closer to the expansion point. By choosing the position of the expansion point, one can thus optimize the accuracy of the reduced model, and guide its convergence towards the most relevant eigenvalues of the system.

In order to ensure accuracy over a large bandwidth, it is common practice to take multiple expansion points using the so-called “complex frequency hopping” [20]. In this work, we use the following distribution of expansion points

\[
z_l = M e^{2\pi j f_{\text{max}} \Delta t},
\]

(31)

for \(l = -L, \ldots, 0, \ldots, L \). This formula places \(2L + 1 \) expansion points along a circular arc of radius \(M \) centered at the origin of the complex plane. The magnitude of the points \(M \) is chosen to be slightly higher than 1, and \(M = 1.1 \) will be used in all numerical examples of Sec. V. With this distribution,
one expansion point is always placed near $z = 1$. Through this expansion point we capture the low-frequency response of the system, since $z = 1$ corresponds to static conditions. The other expansion points are placed near the unit circle up to the maximum frequency of interest f_{max}. With them, we capture the eigenvalues along the unit circle, starting from those that are in magnitude close to one. These eigenvalues have indeed a significant impact on the system response, since they correspond to weakly-damped modes. Eigenvalues well inside the unit circle are instead highly-damped, and their contribution to the system response quickly fades away. It has been experimentally determined that distribution (31) significantly improves accuracy for a fixed reduced model size. An additional benefit is the reduction of the Gram-Schmidt orthogonalizations required to generate the Krylov subspace [16], [17].

B. Linear System Solution

A linear system must be solved for each new moment generated with the Arnoldi process used to generate (11). The system is in the form

$$\begin{bmatrix} (R - F) + z_l(R + F) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \tag{32}$$

where z_l is the current expansion point. When $z_l = 0$, since $(R - F)$ is upper triangular, the system can be solved very efficiently. For $z_l \neq 0$, the system can be solved with one LU decomposition [21] in 2-D and small 3-D cases, similarly to what done in [5] and [6]. For large 3-D cases, iterative methods must be used, and we adopted the conjugate gradient squared method [22] available in Matlab. We determined, through the test cases of Sec. V, that with a normalized residue limit of 10^{-4}, the iterative solver leads to results comparable to those obtained with a direct solver.

In solving (32), we also exploit the 2x2 block structure of R and F. Let us denote the four blocks of the system matrix as

$$\begin{bmatrix} (R - F) + z_l(R + F) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \tag{33}$$

where A_{11} and A_{22} are diagonal matrices. Using the Schur complement [19], we first solve for x_1 in (32)

$$\begin{bmatrix} A_{11} - A_{12}A_{22}^{-1}A_{21} \end{bmatrix} x_1 = b_1 - A_{12}A_{22}^{-1}b_2 \tag{34}$$

and then solve for x_2

$$x_2 = A_{22}^{-1}(b_2 - A_{21}x_1) \tag{35}$$

which can be done very quickly since A_{22} is diagonal. With the implementation discussed in this section, we were able to apply the proposed method to 3-D simulations of practical relevance, with more than one million unknowns.

C. Choice of Reduced Order

In the test cases of Sec. V, the reduced model order for all methods based on MOR was selected manually to achieve the same accuracy from all techniques, and meaningfully compare computational costs. Finding the optimal reduced order in MOR is an active research topic, and several approaches have been proposed based on empirical error measures [23], eigenvalue monitoring [24], false nearest neighbor [25]. Rigorous methods exist, however, only for the truncated balanced realization approach to model order reduction [26]. Due to its high computational cost, truncated balanced realization is not suitable for large electromagnetic systems. Future work will investigate which method, among those cited, is most suitable to estimate the reduced model order in the proposed algorithm.

V. NUMERICAL RESULTS

A. 2-D and 3-D Cavities

The proposed method to reduce FDTD equations and extend the CFL limit was implemented in MATLAB, and applied to several test structures. First, we consider two empty cavities with PEC walls, one in a 2-D setting, and the other one in a 3-D setting. The side length of the cavity is 1 m in both cases. A single source and probe are placed to capture all resonant frequencies within the interesting range. The input is a Gaussian pulse with a bandwidth of 0.5 GHz. The proposed method has been compared against 4 other approaches in the literature: an implicit integration of Maxwell’s equations combined with model order reduction [5], ADI-FDTD [7], spatial filtering [9], and the reduction algorithm of [10], [11]. We investigated their overall run time, accuracy, and approximate numerical dispersion below and above the CFL limit. Analytical resonant frequencies were calculated and used as accuracy metric. All simulations were run for 10,000 timesteps in order to achieve sufficient resolution in the frequency domain. They were also run for 10^6 timesteps to determine their late time stability. The most relevant simulation settings are summarized in Table I.

For the proposed method, we set the order of the reduced model to 80. Five expansion points were used, distributed in the complex plane according to (31) with $M = 1.1$ and $f_{\text{max}} = 0.5$ GHz. A direct linear system solver (LU decomposition) was used in the 2-D case, while the iterative conjugate gradient squared method was used for the 3-D case. The settings of the other methods were selected in order to obtain a comparable accuracy. A reduced order of 40 was used for [5], while the method of Gaffar and Jiao required 500 timesteps to accurately identify the important system eigenvalues. The weighting coefficient, ϵ_1, of Gaffar and Jiao was set at 10^{-3}.

We investigate the accuracy of the different methods by looking at resonant frequencies. The frequency response of the 2-D cavity is depicted in Fig. 3, where we can observe that all methods accurately capture the resonant frequencies

<table>
<thead>
<tr>
<th>Property</th>
<th>2-D Cavity</th>
<th>3-D Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Steps</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>x-axis Cells</td>
<td>101</td>
<td>51</td>
</tr>
<tr>
<td>y-axis Cells</td>
<td>101</td>
<td>51</td>
</tr>
<tr>
<td>z-axis Cells</td>
<td>101</td>
<td>51</td>
</tr>
<tr>
<td>$\Delta y/\Delta z$</td>
<td>1 cm</td>
<td>2 cm</td>
</tr>
<tr>
<td>$\Delta y/\Delta z$ at 0.5 GHz</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>System Size N</td>
<td>30,200</td>
<td>795,906</td>
</tr>
</tbody>
</table>

Table I

Cavities of Sec. V-A: Simulation Parameters.
of the structure, even when run above the CFL limit. Only small deviations can be observed in the highest resonances. A zoom on the resonance at 0.45 GHz is provided in Fig. 4. The small increase in dispersion due to the CFL extension can be observed by comparing the two panels of Fig. 4. Figure 5 shows the relative error on the first resonances for the different methods, which may be attributed to numerical dispersion. When run above the CFL limit, all methods introduce some additional dispersion with respect to Yee’s FDTD run below the CFL limit. It can be observed that explicit methods (proposed method, [9] and [10]) introduce less dispersion than implicit alternatives [7], [5]. Figure 6 refers to the 3-D cavity and shows the relative error on the first 6 resonant frequencies obtained with Yee’s FDTD and the proposed method run at different CFL extension factors, which remains well below 1% in all cases.

Table II shows the simulation time break down for the 2-D case. Below the CFL limit ($s = 0.99$), the proposed method ensures a speed-up of 4.32X with respect to FDTD, thanks to the reduced size of the generated model, which makes its solution very cheap. The proposed method is also faster than the other tested methods. CFL extension techniques such as ADI-FDTD and spatial filtering are not necessary for $s = 0.99$, but have been included to illustrate runtime scaling. When run above the CFL limit, at $s = 4.95$, all methods delivered stable results and achieved a higher speed-up with respect to FDTD. The proposed method offers a speed-up of about 5X with respect to FDTD, which is comparable to the speed-up obtained with the method of Gaffar and Jiao [10].

Table III shows the simulation time breakdown for the proposed method and FDTD for the 3-D case. It can be observed that the proposed method demonstrates a significant speed-up over standard FDTD. In this case, due to the large number of unknowns, MOR time dominates over run time. As a result, the total time required for a single simulation improves only slightly as the CFL limit is extended. In such cases, overcoming the CFL limit can still be beneficial if multiple system simulations are required since, once generated, the proposed models can be solved multiple times with different inputs. Extending the CFL limit decreases the cost of each simulation, as can be observed in the column “Run” of Table II.
TABLE II

<table>
<thead>
<tr>
<th>Case</th>
<th>Size</th>
<th>Setup</th>
<th>MOR</th>
<th>Run</th>
<th>Total</th>
<th>Speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D FDTD</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s = 0.99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Implicit MOR [5]</td>
<td>40</td>
<td>0.19</td>
<td>1.21</td>
<td>0.13</td>
<td>1.60</td>
<td>2.94</td>
</tr>
<tr>
<td>ADI-FDTD [7]</td>
<td>-</td>
<td>0.33</td>
<td>-</td>
<td>27.87</td>
<td>28.20</td>
<td>0.16</td>
</tr>
<tr>
<td>Spatial Filtering</td>
<td>-</td>
<td>0.01</td>
<td>-</td>
<td>16.24</td>
<td>16.25</td>
<td>0.29</td>
</tr>
<tr>
<td>Gaffar and Jiao [10]</td>
<td>144</td>
<td>0.10</td>
<td>0.84</td>
<td>0.47</td>
<td>1.41</td>
<td>3.34</td>
</tr>
<tr>
<td>Proposed</td>
<td>80</td>
<td>0.08</td>
<td>0.74</td>
<td>0.25</td>
<td>1.09</td>
<td>4.32</td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>Case</th>
<th>Size</th>
<th>Setup</th>
<th>MOR</th>
<th>Run</th>
<th>Total</th>
<th>Speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-D FDTD</td>
<td>2.24</td>
<td>-</td>
<td>344.28</td>
<td>346.52</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Proposed (s = 0.99)</td>
<td>80</td>
<td>3.56</td>
<td>99.23</td>
<td>0.25</td>
<td>103.04</td>
<td>3.36</td>
</tr>
<tr>
<td>Proposed (s = 1.98)</td>
<td>80</td>
<td>3.56</td>
<td>99.23</td>
<td>0.12</td>
<td>102.91</td>
<td>3.36</td>
</tr>
<tr>
<td>Proposed (s = 2.97)</td>
<td>80</td>
<td>3.56</td>
<td>99.23</td>
<td>0.09</td>
<td>102.88</td>
<td>3.36</td>
</tr>
</tbody>
</table>

B. 2-D Waveguide with Irises

A 2-D waveguide filter operating in the TM mode of size 5×50 cm is discretized into a 41×401 mesh with $\Delta x = \Delta y = 1.25$ mm. The layout of the waveguide is shown in Fig. 7. A Gaussian current line source with bandwidth of 3 GHz is placed at one end of the waveguide, while a line probe is placed on the other end. The waveguide is filled with a dielectric material with $\varepsilon_r = 2.5$. Five irises (length: 1.25 cm, aperture size: 1 cm, separation: 5 cm) are evenly placed within the waveguide. The waveguide is terminated at both ends on a 4th-order matched absorber with thickness of 1.25 mm. The peak error remained under 0.21% for all cases, while the average errors remained under 1.65% for all cases, and of almost 0.91% for the proposed method at $s = 0.99$, 4.95, and 8.91.

Fig. 8 shows the simulation results for both standard FDTD and the proposed method run below and above the CFL limit. Top panel depicts the magnetic field received by the probes, and shows the stability of the proposed method, even when run 5 times above the CFL limit. Bottom panel gives the S_{21} transmission coefficient over frequency. Excellent accuracy in both time and frequency domain may be observed. Fig. 9 plots the relative error between the proposed method and FDTD, calculated on the transmitted waveform for a CFL extension factor of $s = 0.99$, 4.95, and 8.91. The peak error remained under 1.65% for all cases, while the average errors remained under 0.21%. Timing results for FDTD and the proposed method are summarized in Table IV. The proposed method substantially accelerates the analysis of the waveguide, giving a speed up of $11X$ at the CFL limit ($s = 0.99$), and of almost $16X$ when run with a timestep which is 9 times larger than the CFL limit ($s = 8.91$). These results confirm the advantages of the proposed method, which combines model order reduction and eigenvalue perturbation to accelerate FDTD simulations beyond the CFL limit.
C. 3-D Focusing Metascreen

The proposed method is applied to the focusing metascreen structure first proposed in [27] and subsequently investigated using FDTD in [28]. This test case involves the transmission of a plane wave through a metallic screen with a central slot for focusing onto an image plane. The 3-D simulation domain is of size $61 \times 61 \times 61$ with $\Delta x = \Delta y = \Delta z = 0.3$ mm, and is terminated on all sides with 4th-order, 5-cell matched absorbers. A plane of uniform sinusoidal sources at 10 GHz is placed on one side of the PEC screen, which is one-cell thick. The screen has a single focusing slot of size 13.2 mm \times 1.2 mm. Probes are placed on the other side of the screen along the centre axis of the image plane, at a distance of 0.15λ from the screen. A very high λ/Δ ratio of 100 is required due to the resonating nature of the slot. The fine mesh makes the size of the original FDTD equations quite high ($N = 1,361,886$). Due to the single-frequency excitation, only a pair of expansion points were used, given by

$$z_{1,2} = M e^{\pm j\frac{2\pi}{f_{\text{max}}} \Delta t},$$

with $M = 1.1$ and $f_{\text{max}} = 10$ GHz. The proposed method was used to generate a reduced model of order 40 and simulations were run for 10,000 timesteps until a steady state was reached on the image plane.

Fig. 10 compares the electric field on the image plane calculated with the proposed method and with standard FDTD. Fig. 11 plots the time domain error between the proposed method and FDTD calculated on the average electric field amplitude on the image plane. The maximum error at $s = 0.99$, 2.97, and 4.95 is 0.28%, 0.13%, and 0.28%, respectively. An excellent accuracy can be observed, even when the proposed method is run at 5 times the maximum timestep allowed in conventional FDTD. Table V shows the simulation time breakdown for standard FDTD and the proposed method, which leads to a speed up of 4.28X. In this case, the extension of the CFL limit has a small influence on the total solution time for the proposed method, since the reduction step dominates the solution of the reduced model due to the fairly large size of the problem. Future investigations will focus on improving the efficiency of the reduction process for large-scale problems.

![Figure 9: Waveguide of Sec. V-B: relative error on the transmitted waveform between the proposed method run at $s = 0.99$, $s = 4.95$, and $s = 8.91$ and Yee’s FDTD run at $s = 0.99$. Only the first 3,000 time steps are shown for clarity (error has its maximum in the time interval shown).](image9)

![Figure 10: Focusing metascreen of Sec. V-C: average amplitude of the electric field E_y on the image plane. Comparison of Yee’s FDTD (\triangle) at $s = 0.99$ against the proposed method at $s = 0.99$ (), $s = 2.97$ (), and $s = 4.95$ ().](image10)

![Figure 11: Focusing metascreen of Sec. V-C: relative error on the average amplitude of the electric field E_y on the image plane. The proposed method (run at $s = 0.99$, $s = 2.97$, and $s = 4.95$) is compared against Yee’s FDTD (run at $s = 0.99$).](image11)

<table>
<thead>
<tr>
<th>Case</th>
<th>Size</th>
<th>Setup</th>
<th>MOR</th>
<th>Run</th>
<th>Total</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDTD</td>
<td>0.01</td>
<td></td>
<td></td>
<td>37.17</td>
<td>37.18</td>
<td>-</td>
</tr>
<tr>
<td>$s = 0.99$</td>
<td>200</td>
<td>0.7</td>
<td>1.36</td>
<td>1.25</td>
<td>3.31</td>
<td>11.2</td>
</tr>
<tr>
<td>$s = 4.95$</td>
<td>200</td>
<td>0.7</td>
<td>1.36</td>
<td>0.25</td>
<td>2.31</td>
<td>16.0</td>
</tr>
<tr>
<td>$s = 8.91$</td>
<td>200</td>
<td>0.7</td>
<td>1.36</td>
<td>0.14</td>
<td>2.20</td>
<td>16.9</td>
</tr>
</tbody>
</table>

![Table IV: Waveguide of Sec. V-B: execution time breakdown for Yee’s FDTD and the proposed method at refined CFL numbers. All times are in seconds.](table4)

![Table V: Focusing metascreen of Sec. V-C: execution time breakdown for Yee’s FDTD and proposed method at refined CFL numbers. All times are in seconds.](table5)
D. 3-D Microstrip Filter

The final test case is an application of the proposed method to a 3-D multi-port microstrip filter from [29]. The structure is shown in Fig. 12. The simulation domain is of size $81 \times 91 \times 14$ cells, with $\Delta x = \Delta y = 0.4$ mm and $\Delta z = 0.2$ mm. A one-cell thick PEC microstrip rests on a dielectric substrate with $\varepsilon_r = 2$ and thickness of 3 cells. The PEC microstrip is 7-cells wide (2.8 mm) and two ports are placed at its ends. The domain is terminated on 5 sides with 5-cell 4th-order matched absorbers. A PEC wall is used for the 6-th side to model the ground plane. The size of the original FDTD equations (4) is 619,164. The simulation utilizes uniform line sources and probes. A Gaussian pulse of 20 GHz bandwidth is used to extract the S_{21} and S_{11} parameters. A reduced model (14) of order 100 was generated using 5 expansion points (31) with $M_x = 1.1$ and $f_{\text{max}} = 20$ GHz. Simulations were run for 8,000 timesteps, when most of the input power was dissipated.

Fig. 13 depicts the time domain reflected and transmitted waveforms, while Fig. 15 plots the S_{11} and S_{21} parameters extracted from the time domain analysis. Fig. 14 plots the relative error between the proposed method and Yee’s FDTD.

The proposed method was run for a CFL extension factor of $s = 0.99$, $s = 2.97$, and $s = 4.95$, and resulted in a maximum error always lower than 1.85%, on both reflected and transmitted waveforms. These results further confirm the excellent accuracy of the proposed technique and its stable behaviour above the CFL limit. Finally, table VI shows the simulation time breakdown for the proposed method compared to Yee’s FDTD at various CFL extension factors. Also in this case we observe a speed-up with respect to standard FDTD, with very small loss of accuracy.

VI. CONCLUSION

We proposed a new method to perform stable FDTD simulations beyond the CFL limit. The method is based on model
order reduction and eigenvalue perturbation. In comparison to the state of the art, the proposed technique preserves the structure of the FDTD equations in the reduction process and can handle 3D problems with more than 1 million unknowns. Stability below the CFL limit is guaranteed by construction through the reduction process. Stability above the CFL limit is instead achieved through a novel approach based on eigenvalue perturbation. The proposed method was applied to microstrip and waveguide problems. Speed-ups of up to 16X were shown with respect to FDTD. Examples also demonstrated the accuracy of the proposed method, which always resulted in errors lower than 2% with respect to FDTD. Future work will focus on devising an algorithm to determine the optimal order of the reduced model, and on further improving the computational cost of the reduction step, which currently limits the efficiency of the method for very large structures.

REFERENCES

Costas D. Sarris (SM08) received the Ph.D. degree in electrical engineering and M.Sc. degree in applied mathematics from the University of Michigan, Ann Arbor, in 2002. He received a Diploma (with distinction) in Electrical and Computer Engineering from the National Technical University of Athens, Greece, in 1997. He is currently a Full Professor and the Eugene V. Polistuk Chair in Electromagnetic Design at the Department of Electrical and Computer Engineering at the University of Toronto, Toronto, ON, Canada. His research interests are in the area of numerical electromagnetics, with emphasis on high-order, multi-scale computational methods, modeling under stochastic uncertainty, as well as applications of numerical methods to wireless channel modeling, wave-propagation in complex media and meta-materials, wireless power transfer, RF therapeutics and electromagnetic compatibility/interference (EMI/EMC) problems. Prof. Sarris was the recipient of the IEEE MTT-S Outstanding Young Engineer Award in 2013 and an Early Researcher Award from the Ontario Ministry for Research and Innovation in 2007. His students have received paper awards at the 2009 IEEE MTT-S International Microwave Symposium, the 2008 Applied Computational Electromagnetics Society Conference, and the 2008 and 2009 IEEE International Symposia on Antennas and Propagation. He was an Associate Editor for the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES (2009-2013) and the IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS (2007-2009). He is the TPC Chair for the 2015 IEEE AP-S Int. Symp. on Antennas and Propagation and CNC/USNC Joint Meeting in Vancouver, BC, Canada.

Piero Triverio (S’06 – M’09) received the M.Sc. and Ph.D. degrees in Electronic Engineering from Politecnico di Torino, Italy in 2005 and 2009, respectively. He is an Assistant Professor with the Department of Electrical and Computer Engineering at the University of Toronto, where he holds the Canada Research Chair in Modeling of Electrical Interconnects. From 2009 to 2011, he was a research assistant with the Electromagnetic Compatibility group at Politecnico di Torino, Italy. He has been a visiting researcher at Carleton University in Ottawa, Canada, and at the Massachusetts Institute of Technology in Boston. His research interests include signal integrity, electromagnetic compatibility, and model order reduction. He received several international awards, including the 2007 Best Paper Award of the IEEE Transactions on Advanced Packaging, the EuMIC Young Engineer Prize at the 13th European Microwave Week, and the Best Paper Award at the IEEE 17th Topical Meeting on Electrical Performance of Electronic Packaging (EPEP 2008).