

Outline

- Introduction
- Microstrip lines on silicon
- Spiral inductor modeling
- Differential excitation
- Symmetric spiral inductors
- Application: oscillator design
- Conclusion

Mina Danesh

Monolithic Inductors for Si RF Applications

Spiral Inductor Modeling

4.5 turns, $OD = 241 \ \mu\text{m}$, $w = 10 \ \mu\text{m}$, $s = 5 \ \mu\text{m}$ square spiral inductor

Model / Simulation / Measurement

Symmetric inductor modeling

Table 2: Symmetric Inductor Lumped Elements

L (nH)	$R_{dc}\left(\Omega\right)$	C_{ox} (fF)	C_{si} (fF)	$R_{si}(\Omega)$	$C_{o}\left(\mathbf{fF}\right)$
8	7.5	146	52.7	590	52

- Full-wave EM simulation
- Measurement

2-port calibration:

- Probes on opposing sides for thru calibration
- Probes moved to same side for measurement

De-embedding: Open / Short

• Differential: $S_d = \frac{S_{11} + S_{22} - S_{12} - S_{21}}{2}$ • Input impedance: $Z_d = 2Z_0 \left(\frac{1 + S_d}{1 - S_d}\right)$ $(Z_0 = 50 \ \Omega)$

Mina Danesh

Literature Comparison

Inductor type	Reference	Si ρ	t_M (μ m)	L (nH)	Q-factor
1-level metal	Long	10 Ω-cm	1-3	1.88	6-10 @ 4 GHz
2-level metal	Park	2 k Ω-cm	2	13	12 @ 3 GHz
5-level metal	Burghartz	12 Ω-cm	4.3	2.2	16 @ 2 GHz
Ground shield	Yue	10-20 Ω-cm	2	8	7.2 @ 1.5 GHz
Membrane	Chi	2 k Ω-cm	1 (Au)	0.9	20 @ 4.3 GHz
Etched oxide/Si	Rieh	10 kΩ-cm		2	Res. freq: 30 GHz
Differential Single-ended	Danesh Long	15 Ω-cm	2	8	9.3 @ 2.5 GHz6.6 @ 1.6 GHz
😴					

Application: Differential Oscillator

Cross-coupled Oscillator

	Characteristics	8 nH symmetric	4 nH asymmetric
	<i>OD</i> / N	250 µm / 5	210 µm / 3.5
	Inner gap	150 µm	140 µm
	Total length	4 mm	2.44 mm
_	R _{dc}	7.5 Ω	4.56 Ω
	<i>Q</i> @ 2.1 GHz	8.6	7.5

Table 3: Comparison between inductors.

Table 4: Comparison of overall performance.

		P	Par	ameters	8 nH symmetric	4 asym	nH metric
f_{a}	osc ((Gl	Hz)	2.061	2.1	114
V	out	sw	vin	g (V)	2.8	1	.6
PN (dBc/Hz) @ 1 MHz			sc/	Hz) @ 1 MHz	-120.9	-11	18.9
P _{out} (dBm)		7.1	5	.4			
3	rd h	arr	no	nic P _{out} (dBm)	-30.9	-2	9.1

Mina Danesh

Conclusion

- Propagation modes for silicon substrates
- Microstrip line and spiral inductor modeling
- Differential vs single-ended excitation: lower parasitics Higher peak Q-factor (50% +) Higher peak frequency (50% +) Broader operating bandwidth
- RF applications
 - Symmetric inductors (reduced chip area) Oscillators, amplifiers, mixers ...
 - **Other substrates: GaAs**

Mina Danesh