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Summary

This paper is a review of the literature on the subject of arc discharges on spacecraft dielectric
materials that have become charged by energetic electrons and ions. The results discussed will be
mainly from laboratory measurements of the properties of these arc discharges. Arcs resulting
from the charging of spacecraft dielectrics can be extremely strong because the charge over a large
area is mobilized through the phenomenon of arc propagation. The resultant damage patterns on
the dielectric will be shown to be related to the arc patterns, and to the optical anisotropy and
crystallinity of the material. The evidence for dielectric melting is suggestive of likely contami-
nation of nearby surfaces. The effectiveness of arc barriers sheds light on arc propagation mech-
anisms. Coupling to external circuits can be deduced from blowoff calculations and from near-
field measurements of arc currents. Exposed dielectric edges contributed to charge accumulation
and arc triggering. Broad-spectrum, high-energy incident electrons can cause charging and dis-
charging internal to the spacecraft.

1. Introduction

Charge accumulation in spacecraft dielectric materials is believed to be
responsible for arc breakdown, strong electromagnetic interference, and con-
sequent “operational anomalies” or sometimes irreversible component failures
on operational synchronous-orbit satellites. The possibility that the magne-
tospheric hot-plasma environment could cause such failures has led to two
books [1,2], five conference proceedings [3-7] and many journal publica-
tions. The quiet and disturbed magnetosphere has been reviewed and its prop-
erties correlated convincingly with anomaly occurrences [8-16]. Even in
Jupiter’s magnetosphere, discharges probably caused the unexpected “power-
on resets” observed on the Voyager spacecraft, forcing the design of corrective
measures for the planned Galileo flight past Jupiter [17]; these additional
corrective measures were intended to reduce internal charging due to pene-
trating high-energy electrons, because external charging had already been
eliminated through the choice of exposed materials.
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Few satellites have been instrumented to observe charging/discharging phe-
nomena. Although not intended for this purpose, particle spectrometers meas-
ured whole-satellite charging as early as 1972 [18]. Much later, a satellite to
study Spacecraft Charging at High Altitude (SCATHA, or P78-2) was
launched, carrying a selection of exposed materials [19] and appropriate
instruments. The resulting measurements have been reviewed [20-23] show-
ing that arc discharges actually did occur. However, relative to laboratory mea-
surements, these discharges in space were weaker than expected and they
occurred at unexpectedly low values of surface potential, a result which pro-
voked a re-examination of laboratory simulation techniques to be discussed
further in Section 3.

Laboratory measurements of arc phenomena are, of course, much easier to
make than space measurements. Motivated by concern over satellite failures,
researchers started in about 1972 to expose back-metallized sheets of thermal-
blanket polymer to monoenergetic electron beams up to about 25 keV. They
observed arc discharges and saw tree-shaped damage patterns which they soon
realized were miniatures of the large Lichtenberg figure damage patterns
observed much earlier by Gross [24,25].

2. Classification of arcs and damage tracks

The arcs observed on polymer sheets were multi-forked and lightning-like
(Fig. 1), often extending over most of the exposed surface area and appearing
to start at an exposed edge or at a point of bulk breakdown to the metallized
backing (a “punchthrough™) [26]. Arcs that begin at a punchthrough are
generally more frequent and weaker than those that begin at an edge, probably
because less accumulated charge is needed to produce breakdown fields and
trigger an arc in the vicinity of a punchthrough. Whatever the starting point,
arc patterns often appear to have a preferred direction (Fig.2), which has been
correlated with the direction of microscopic damage tracks (Fig. 3), with the
slow axis of optical anisotropy, and with the microscopic “brick and mortar”
patterns revealed by surface etching [27]; these direction surface properties
are due to the mechanical stretching which is part of the process of manufac-
turig some types of thin polymer sheets. It has also been noted [28] that, if an
exposed polymer sheet edge is parallel to the principal optical axis, the break-
down threshold of beam energy is the same as if the edge were not exposed,
while for other orientations the threshold is lower. In Refs. [29] and [30]
there are papers [29a,30a,30b]} that show many types of material damage,
especially sub-surface tunnels, surface grooves, and tunnel eruptions with clear
evidence of localized melting (Fig. 4). Mass-spectroscopic analysis [31] pro-
vides evidence that surface breakdown on polymers results in emission of light
hydrocarbons and fluorocarbons. Quartz optical solar reflectors arc only at
their edges where edge chipping is observed [ 32]; this is not surprising because



97

Fig. 1. Arc discharge on Mylar sheet specimen over a grounded substrate and covered by a grounded
mask with a circular aperture [41].

calculations predict high charge and field concentrations near dielectric edges
exposed to an electron beam [33]. Discharges have also been detected under
a conducting coating of indium tin oxide on quartz [34]. As well, there is a
possibility that electrical pre-charge could be triggered into an arc discharge
state by external fields such as X-rays [35,36]. Recently arc discharge damage
has been reviewed [37] and the similarity between polymer arcs and atmos-
pheric lighting has been explored in depth [38].

3. Arc discharge dependence on material dimensions and incident beam
properties '

For a thin sheet of polymer over a conducting substrate, laboratory experi-
ments showed that the peak substrate replacement current is approximately
proportional to the square root of the exposed area, over a range from 1000 A
at 1 m? to 1/10 A at 108 m?, the latter microscopic area having been defined
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Fig. 2. Simultaneous arcs on two Mylar specimens which were cut from the same sheet, and one
of which was rotated 90° [30b].

Fig. 3. Straight damage tracks on Mylar sheet. Photograph width is 450 yum [27].
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Fig. 4. Near-surface damage tunnel with apparently melted eruption holes [29a].

by partially focussing the incident electron beam [39]. Further refinement of
the area-scaling experiments [40-42] confirmed this square-root-area depen-
dence (Fig.5), and, moreover, showed that the charge released (the time inte-
gral of the substrate current) is proportional to the exposed area (Fig. 6) and
the arc duration is proportional to the square root of the area (Fig. 7). The
charge proportionality to area is what one would expect, assuming that all the
charge (or at least a constant fraction of it) is cleaned off during each dis-
charge. The duration proportionality to linear dimension (square root area)
implies a well-defined arc propagation velocity across the surface. Finally, the
peak current proportionality to linear dimension is consistent with the concept
of discharge by an advancing wavefront, so that the instantaneous current is
proportional to the wavefront width, which has a maximum value of the order
of the specimen’s linear dimensions. Other experiments on discharge scaling
have involved the measurement of radiated signal spectra [43,44], with the
conclusions that the radiated energy is proportional to the peak substrate cur-
rent, the radiated energy is inversely proportional to the duration of the sub-
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Fig. 5. The peak substrate current during an arc discharge, showing its approximately square-root
dependence on specimen area [42].

Fig. 6. The total charge released to ground from the substrate during an arc discharge, showing its
approximate proportionality to specimen area [42].

strate current pulse, and the radiated spectrum is a function of area. A
dependence of peak current on incident electron flux has been observed on
Kapton [45,46] and traced to material conductivity effects which are signifi-
cant at low fluxes [33]. Specimen thickness was found to influence charging
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Fig. 7. The arc discharge current pulse duration, showing its approxiately square-root dependence
on specimen area [42].

[47] and arc discharging [48], with the conclusion that arc strength was
reduced in thin specimens by punchthrough formation and in thick specimens
by conductivity effects.

The electron population at synchronous orbit includes a significant fraction
with energies high enough to penetrate into a spacecraft’s interior, and perhaps
cause discharges. Monoenergetic, low-flux beams in the 200-500 keV range
were scattered by a 1-mil (25-um) foil and produced discharges in a circuit
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board [49]. Combined low-energy non-penetrating and high-energy penetrat-
ing beams generally reduced arc occurrence and strength [50], but with dif-
ferent fluxes and energies, such combined beams actually increased arc strength
on Kapton and Mylar [51]. Dual low- and medium-energy beams produced
very low surface potentials but with enough embedded charge and internal
fields to induce breakdown [52,53 ], which might explain some of the SCATHA
observations. Broad-spectrum beams produced a very wide range of discharge
strengths [54,55] but led to the conclusion that monoenergetic beams were
still useful for worst-case simulations. In a carefully executed simulation of an
experiment on the Combined Release and Radiation Effects Satellite (CRRES)
[56], it has been shown that discharges occur in many types of dielectrics
behind either 3 mils of stainless steel or 8 mils of aluminum.

4. Arc propagation

Arc propagation is the phenomenon that mobilizes large quantities of charge,
turning what might otherwise be a small and harmless spark into an arc car-
rying currents of hundreds or even thousands of amperes. Arc propagation
velocities have been measured in different circumstances and by different
means, usually resulting in values between 10° and 10° m/s. Early framing-
camera photographs of arc evolution in 2-MeV-charged dielectric blocks re-
vealed some velocity dependence on deposited charge density [57]. A novel
“interference” technique for velocity measurement involved arc propagation
in opposite directions around a dielectric ring [58]. A segmented-substrate
method has been used [59] but this instrumentation method may have influ-
enced the progress of the arcs. Direct measurements of propagation velocity
using optical fibers and avalanche photodiode detectors have been made (Fig.
8), after rubbing the specimens very lightly to induce straight arcs and using
narrow-aperture masks to generate single arcs [60].

In review papers [61,62], Frederickson presented arguments to the effect
that the observed discharge effects can be explained in terms of pre-breakdown
streamer formation. Such streamer formation in the bulk of a dielectric has
been analyzed [63], resulting in the calculated velocity of 1.65x 10° m/s in
Teflon. A simpler theory [64] associates the high-field failure of the theoret-
ical model with the onset of arc breakdown. However, such bulk models may
not be applicable to near-surface arcs on thin materials, arcs which result in
the ejection of large quantities of charged particles. Electron ejection (or
“blowoff”) clearly gives rise to the very high substrate currents that have been
measured. There is also evidence for ion emission [65-67], leading to the con-
clusion that a surface discharge results in the ejection of high-energy electrons
and a relatively low-energy plasma of both electrons and ions. The idea that
particle motions over the dielectric surface controlled the arc propagation pro-
cess was expressed in the “brushfire” propagation model [68]. The impor-
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tance of ion acceleration over the dielectric surface ahead of the breakdown
region has been emphasized in recent theoretical work [69,70] which contends
that these ions, upon impacting the surface, generate both secondary electrons
to discharge the material and secondary ions to advance the discharge wave.
However, experimental research on arc barriers [71] (Fig. 9) indicates that
the progress of an arc is relatively little impeded by a thin dielectric “wall”
which presumably is opaque to particles and transparent to electromagnetic
fields; this suggests that the ion acceleration (which indeed must occur in the
direction of propagation) is not as important as the local electromagnetic field
in advancing the breakdown wave.

5. Electromagnetic interference

The electrons emitted from a propagating arc are strongly accelerated in the
field of the undischarged, embedded electrons. The accelerated electrons move
tangentially to the surface, to eventually return through whatever return path
1s available, creating a current loop which forms the source of electromagnetic
interference [ 72-74]; in the case of laboratory models of spacecraft, the meas-
ured return currents on the spacecraft body correlate well with numerical com-
putations which begin with the measured properties of the arc discharge. The
subject of interference coupling by this mechanism has been reviewed recently
in considerable detail [75]. It has also been found through laboratory experi-
ments [76] that direct electromagnetic radidtion from arcs on fiberglass struts
comes close to specified spacecraft upper limits for radiated interference.

6. Recent developments

The advent of high-voltage solar cell arrays has raised concern about elec-
trical breakdown. It has become established that negative metal (solar cell
interconnects) in the vicinity of dielectrics (solar cell cover glass or dielectric
supports) gives rise to arc breakdown [77-79]. In particular the existence of
an ambient plasma has been established as an important element in this break-
down process [80-82]. It has been suggested that unneutralized surface ions
on the metal surface cause high local fields which initiate the discharge [83].
In addition, it has been shown that ambient ions are strongly attracted to elec-
tron-charged dielectrics and the ion trajectories are such that the ion beam
concentrates into a central spot on the dielectric [48]; charge neutralization
apparently occurs in this “ion spot” region because subsequent arcs avoid the
region, the overall result being a decrease in the strength of dielectric surface
arcs due to the presence of ambient ions [84].
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7. Conclusions

The state of the art is that the properties of propagating surface arcs are well
known empirically but there is not yet a widely accepted theoretical model for
these arcs. A similar statement is valid for propagating subsurface arcs. Sur-
face arc occurrence can be reduced on exposed spacecraft thermal control
materials by lightly metallizing the outermost dielectric, although arc occur-
rence under the metallization is still possible. Surface negative charge accu-’
mulation on exposed spacecraft materials will be reduced by the attraction of
ambient positive ions, but the available ion flux may not be sufficient for com-
plete neutralization. The accumulation of very-high-energy electrons in cables
and circuit boards inside a spacecraft has now been proven to result in arc
discharges; such arcs are much smaller than propagating surface or near-sur-
face arcs, but these interior arcs can be just as damaging because the resulting
interference signals are channelled to sensitive circuits by the cables and cir-
cuit boards on which the arcs occur.
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