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Resonance Phenomena of Log-Periodic Antennas:
Characteristic-Mode Analysis

MARTIN HILBERT, MARK A. TILSTON, anp KEITH G. BALMAIN, FELLOW, IEEE

Abstract—The method of characteristic modes is implemented in the
form of a general-purpose computer program based on an established
moment-method program using piecewise sinusoids. Application of the
method to the log-periodic dipole antenna (LPDA) yields characteristic
modes that are insensitive to changes in t-method seg r
and are revealing with regard to parasitic resonance phenomena. The
study of the modes on LPDAs shows that the asymmetry resonance is
dominated by a mode that is not restricted to one cell, although the single-
resonant-cell postulate remains a good first-order explanation. On the
other hand, the symmetric termination resonance is shown to invelve
more than one mode. A numerical study of various antenna deformations
shows that only length extensions cause strong asymmetry resonances.
The E-plane array is analyzed, and the results are shown to compare
favorably with experiment.

tation

I. INTRODUCTION

HE LOG-PERIODIC dipole antenna (LPDA) is a popular

choice for systems requiring a constant radiation pattern
and input impedance over a wide frequency band. However,
under certain conditions, narrow-band parasitic resonances
that degrade antenna performance are known to occur [1}-13].
These resonances are of two types, both involving the feeder
line which extends from the feed point at the small end of the
antenna to a short-circuit termination just beyond the large end
of the antenna. One type of resonance involves feeder energy
leaking past the radiating region and exciting a resonance
between the short-circuit termination and the dipole that is
closest to a half-wavelength. This resonance results in an
altered current distribution that produces a decrease in the
front-to-back ratio, and this resonance occurs when the half-
wave dipole is separated from the termination by an odd
number of loaded-transmission-line half-wavelengths. This
resonance is called a fermination resonance because it
involves the flow of high currents in the short-circuit
termination and is therefore highly dependent on both the
termination position and the termination impedance. The
termination resonance may be eliminated either by the
insertion of lossy material in the termination region, or by the
replacement of the short circuit with a matched resistor. It may
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be reduced by the use of thicker dipoles as the radiating
elements [4].

The other type of resonance is known as an asymmetry
resonance because it always occurs on LPDAs having
physical asymmetry [3]. It also occurs whenever two or more
LPDAs are configured as an E-plane array even though each
of the individual antennas may be free from structural
asymmetries [1]. It is interesting to note that this resonance
can be excited even on a single, symmetric LPDA by incoming
waves propagating in a wide range of off-boresight directions,
but under these conditions, the resonance will not couple to the
antenna terminals.

The asymmetry resonance involves a net current flowing on
the transmission-line feeder (boom). Clearly, this could never
happen in the case of a symmetric LPDA being used as a
transmitting antenna because ideally the excitation would be
symmetric, with the result that the currents on each of the two
wires comprising the boom would be equal and opposite.
However, the asymmetry resonance is excited whenever
asymmetries are present. The net feeder current is responsible
for the radiation to the side which always accompanies this
resonance. Furthermore, the region on the feeder where the
net current is strongest seems to be localized and is in the
vicinity of the radiating region. Thus, an early explanation of
the phenomenon was the resonant cell postulate of Balmain
and Nkeng [3], depicted in Fig. 1. The asymmetry resonances
also affect the antenna input impedance, causing small loops to
appear in a swept-frequency Smith chart display [3].

Some theoretical work has been done on both the termina-
tion resonance [2] and the asymmetry resonance caused by the
change in length of one monopole on the LPDA [5]. The latter
work includes an investigation of the resonant cell postulate: a
parallel-wire resonator was analyzed as it was deformed into
the shape of a LPDA cell. The present work is a theoretical
investigation of the LPDA both with and without physical
asymmetries. The E-plane array is also considered and the
theoretical results pertaining to it are compared with experi-
mental data [6]. The method of characteristic modes [7], [8] is
used in this analysis in the expectation that the breaking up of
the current into basis functions particular to the antenna might
provide new insight into the resonance phenomena and also
might provide suggestions as to how to reduce the unwanted
resonances.

II. CHARACTERISTIC MODE THEORY

Exact solutions for current flow exist for certain structures
whose boundaries coincide with coordinate surfaces of coordi-
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Fig. 1. The ‘“‘resonant cell postulate’’ of Balmain and Nkeng {3]. (a) Parallel
wire resonator is (b) offset, (c) bent, and (d) incorporated into a log-
periodic dipole antenna.

nate systems in which the Helmholtz equation is separable.
The solutions are summations of infinite sets of basis
functions. Garbacz [7] has shown that it is possible to
determine numerically a set of basis functions for the current
on an arbitrary conducting body. The following outlines the
numerical solution and lists some of the properties of the
resulting basis functions or characteristic modes, following
Harrington and Mautz [8].

Starting with a symmetric mutual impedance matrix Z = R
+ jX computed by a moment-method program, a weighted
eigenvalue equation is set up,

XI,=N\,RI,. 1)

The resulting eigenvectors I, are the characteristic modes,
and A, are the corresponding eigenvalues. The subscript n
ranges in value from one to the order of the matrix. Because
the Z matrix is symmetric, the eigenvalues, and hence the
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eigenvectors (characteristic modes), are real. Also, owing to
the symmetry of Z, certain orthogonality conditions hold.
With suitable normalization, the following are true:

ITRI,= by
ITXT, = \yBpun

ITZI= (14 jN,)8pmn &)
in which & is the Kronecker delta, m and n are integers, and 7
denotes transpose. The far fields of the modes may be shown
to be orthogonal also. Thus each mode radiates power
independent of the other modes. It may also be shown that the
sign of the eigenvalue is determined by the type of stored
energy that is dominant for each characteristic current. If the
magnetic stored energy dominates, the eigenvalue is positive
and may be termed inductive; if electric, then the eigenvalue is
negative and capacitive. Note that resonance corresponds to A,
= 0.

Finally, if ¥ is understood to be the voltage vector as
encountered in a moment-method equation ZI =V, then the
total current flow I, is given by

N ITY

=3

n=1

I,. 3
14N, @)

Modes with small eigenvalues, and thus closer to resonance,
are easier to excite. The location of the voltage source is also
important because, if the feed point is located at a characteris-
tic current null, then that mode will not be excited.

In practice, it was found that only a few modes contribute to
the total current flow on an LPDA. If the modes are ordered in
ascending values of {\,|, it is only the lower-order modes that
need be used in the summation. Although it was found that the
normalized modal currents were greater for higher order
modes, the increase was slight in comparison to the increase in
{\s| and thus the higher order modes contributed only a
negligible current (equation (3)).

In the present work, a moment-method program due to J. H.
Richmond, based on Galerkin’s method and piecewise sinus-
oids [9], was used to generate the mutual impedance matrix Z.
Commercially available software was then used to solve the
eigenvector problem [10]. As a test of the accuracy of the
characteristic-mode computation, the LPDA input impedance
determined in this way was compared with the input impe-
dance determined by matrix inversion of the system ZI = V;
the agreement was to three significant digits. Richmond’s
moment-method program forces the Z matrix to be symmetric,
so the eigenvalues turn out to be real as expected, but
computational inaccuracy can still produce incorrect eigen-
values and eigenvectors. Therefore, as a further test of
computational accuracy, the first of equations (2) was com-
puted for each characteristic mode and some discrepancies
were noted, but only for three or four of the highest
eigenvalues for which the contribution to the complete solution
is entirely negligible.

Since any moment-method program requires a segmentation
of the structure under consideration, the modes were tested to
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determine their sensitivity to the segmentation scheme. Al-
though a small discrepancy was found in the eigenvalues, the
characteristic currents remained unaltered to any appreciable
extent. The characteristic modes were also insensitive to
changes in the calculation of the mutual impedance matrix.
The changes referred to were those required to eliminate the
so-called ‘‘computer-generated asymmetries’’ reported by
Vainberg and Balmain [5] and to eliminate changes in the
moment-method solution due to the renumbering of a given
segmentation scheme. These modifications to Richmond’s
program (due primarily to one of the authors, M. A. T.) are
presented in the Appendix. In addition, application of the
characteristic-mode method to simple structures such as
transmission line resonators and simple dipole antennas
produced current flows and input impedances in agreement
with known results.

III. ANTENNAS USED IN STUDY

The primary antenna used in the numerical simulation was a
typical nine-element LPDA with 7 = 0.89, ¢ = 0.15 and a
frequency range of 600 to 850 MHz: the longest dipole was 25
cm long, tip-to-tip. The characteristic transmission-line impe-
dance of the feeder was 135 Q, a value high enough to avoid
significant error arising from the ‘‘thin wire’’ assumption
employed in Richmond’s program. The feeder was terminated
with a short circuit 6.25 cm beyond the longest dipole. The
feeder used in this study comprises a pair of straight
cylindrical conductors equivalent to the “‘criss-cross’” config-
uration employed for conceptual clarity in Fig. 1. Most results
presented assumed a wire conductivity of 10 MS/m and a wire
radius of 1 mm. Changing the wire radius, although not
significantly affecting the resonance behavior, does shift the
resonance frequencies. For a 1 mm radius, the asymmetry
resonances were at 573, 667, and 779 MHz, and a termination
resonance was at 811 MHz. For the case of a 3 mm radius, the
779 MHz asymmetry resonance was shifted upward to 810
MHz and the 811 MHz termination resonance upward to 837
MHz. In comparison with thicker wires, the computations
showed that thinner wires cause larger performance degrada-
tions at termination-resonance frequencies and smaller per-
formance degradations at asymmetry-resonance frequencies.
Exact comparison with experiment is impossible since the
program in the form used cannot handle segments of different
wire radii and the actual antennas used were made of two
different wire thicknesses (boom radius = 3.2 mm, monopole
radius = 1.5 mm).

Also considered was a highly compressed seven-dipole
LPDA with 7 = 0.89, ¢ = 0.019, and a frequency range from
550 to 740 MHz. The feeder characteristic impedance was 100
Q. This was not meant to be an example of a good antenna but
rather as a test of the resonant cell postulate; this was the only
antenna investigated by Balmain and Nkeng [3] that had the
same number of asymmetry resonances as cells.

IV. CHARACTERISTIC MODES ON A SYMMETRIC ANTENNA

By symmetry, it is evident that only two types of modes can
exist on a symmetric LPDA. The first type has equal and
opposite currents everywhere on the transmission-line feeder
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Fig. 2. The dominant radiating symmetric mode at 700 MHz. The arrow
indicates the location of the N\/2 dipole. The current reference directions and
the scale are indicated on this graph. Subsequent graphs have only one scale
arrow and no reference direction arrows. The antenna itself is drawn to
scale. The designations T and B indicate that the associated monopoles are
attached to the “‘top’” and ‘‘bottom’” feeder wires, respectively. At the
lgrge.end of the antenna, the two feeder wires are terminated with a short
circuit.
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Fig. 3. The dominant resonant asymmetric mode at 779 MHz, an asymme-

try resonance frequency. The dot indicates monopole #5t which is elongated
in the study of asymmetries.

and symmetric currents on opposing monopoles (see example
in Fig. 2: note that this figure and all subsequent figures
present computed results). Since modes of this type are
responsible for radiation under symmetric excitation, they will
be referred to as radiating symmetric. The second type of
mode has equal and co-directional currents everywhere on the
transmission-line feeder and equal and opposite currents on
opposing monopoles (Fig. 3). This type of mode is responsible
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for the asymmetry resonances and will thus be termed
resonant asymmetric.

Before discussing some of the specifics of these modes, it is
instructive to recall that the contribution of each mode to the
total current is directly proportional to the modal current at the
point of excitation and inversely proportional to 1 + j\,
where )\, is the associated eigenvalue. The modes are hence
numbered in ascending values of |\,|. Of the 110 modes
associated with the standard antenna, usually the first five or
six have an eigenvalue of 10 or less, and the next two or three
have an eigenvalue between 10 and 100. After that, the
contributions of the modes become insignificant. The largest
eigenvalues are of the order of a million.

When excited by a feed-point source located halfway
between the two feeder wires, the antenna exhibits a traveling
wave from the feed point to the radiating region, a condition
requiring phase progression. Because characteristic modes are
equiphase, it is expected that at least two modes will contribute
strongly to the total current. An examination of the first three
modes at 700 MHz, a nonresonant frequency, reveals this to
be correct. These modes contribute 50, 28, and 16.5 percent
of the total radiated power, with current phases of 3°, 113°,
and 69° with respect to the input voltage. As the frequency is
increased, more modes contribute significant percentages of
the total power.

For the mode shown in Fig. 2, although the region of
greatest modal current coincides with the radiating region,
there is a nonnegligible current flow in the termination region
(i.e., the region between the half-wave dipole and the feeder
short-circuit). This is true also of the other radiating symmet-
ric modes that contribute significant percentages of the total
radiated energy. However, the total current, determined by
summation of the individual modes (equation (3)), has
negligible components beyond the radiating region, except at
termination resonance frequencies. Note on Fig. 2 and
subsequent figures that the indicated ‘“N/2 dipole’’ is actually
the location where the envelope of dipole end points is A/2
wide, and the ‘‘radiating region’’ is generally the next smaller
three or four dipoles.

Before discussing the resonant asymmetric modes and their
associated Q values, it is necessary to consider how much the
characteristic modes change from one frequency to another. In
most cases the change is small enough and the modes are
distinct enough that it is possible to associate the modes from a
solution set at one frequency with those from a solution set at a
different frequency just by visual inspection of the currents.
However, cases do arise where this is not possible. Neverthe-
less, it is possible to associate the modes by plotting their
eigenvalues as a function of frequency. This was found to
produce a smooth curve in all cases attempted and hence is a
good method of sorting the modes [11].

Fig. 3 shows a resonant asymmetric mode at 779 MHz, an
asymmetry resonance frequency. This mode has a maximum
of current along the transmission-line feeder between the
dipoles carrying the most current. Since its eigenvalue is very
close to zero at this frequency, it is the first mode in the
solution set. It also has the largest current flow of the low-
order resonant asymmetric modes and is the only low-order
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Fig. 4. A plot of eigenvalues showing how one deduces the quality factor Q
of the resonant asymmetric mode of Fig. 3 (indicated by dots). The top
curve (indicated by circles) shows eigenvalues for the second most
dominant resonant asymmetric mode and is included to show that this mode
does not contribute to the resonance.

resonant asymmetric mode whose eigenvalue varies rapidly
with frequency (Fig. 4). Hence, the quality factor Q associated
with this mode will be essentially the Q associated with the
total current flow in any experiment designed to detect an
asymmetry resonance around this frequency. Since the excita-
tion is inversely proportional to 1 + j\,, it follows that the 3
dB frequencies correspond to A, = =+ 1 (given that the actual
modal current does not change significantly over the fre-
quency band in question, as in fact it did not). With reference
to Fig. 4, a value of Q = 130 was calculated for this mode
which is approximately double the value estimated from the
experimental results reported by Balmain and Nkeng [3].
Asymmetry resonances accompany zero crossings of the
eigenvalue of this mode. At each higher resonant frequency,
the mode is shifted one cell toward the apex of the LPDA.
Thus, it always coincides with the radiating region. Because of
this, any attempts to suppress the resonant asymmetric mode
while leaving the radiating symmetric modes unaltered would
be very difficult.

Although it bears a strong resemblance to the resonant cell
postulate, the mode of Fig. 3 is not confined to one cell. A
search of all the modes at an asymmetry resonance frequency
failed to produce a mode that would fit the resonant cell
postulate exactly. Despite this, the postulate remains a good
first-order explanation of the asymmetry resonance phenome-
non.

Because the resonant asymmetric modes all have a current
null at the feed point, they are not excited by a transmitter. In
the case of a receiving antenna and for the same reason, a
wave incident from the side can excite the resonance, but it
will not couple into the receiver.
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Fig. 5. The mode corresponding to the termination resonance as postulated
by Bantin and Balmain [2]. The frequency is 811 MHz. This mode is
eliminated upon replacement of the short circuit in the termination with a
resistor.

The termination resonance occurred at 811 MHz. An
anomalous radiating region behind the primary radiating
region, as reported by Gong and Balmain [4], was found by
computation. When a matched resistor in the location of the
transmission-line short-circuit termination was specified in the
computer program, the anomalous radiating region was
eliminated, as in [4]. With no resistor specified, a mode,
which matches the description of the termination resonance
given by Bantin and Balmain [2], was computed. A half-wave
resonance between the short circuit termination and the dipole
closest to a half-wavelength can be seen clearly in Fig. 5. This
mode disappears from the solution set when a matched
termination is specified.

Yet, the termination resonance is much more complicated
than the above seems to suggest. With a short circuit
termination, several modes with large current flows exist
behind the radiating region. This in itself is not surprising
since the phenomenon is observed at other frequencies. What
is surprising is that, whereas at other frequencies the modal
currents behind the radiating region cancel upon summation,
at the termination resonance frequency they do not. Further-
more although the total current behind the radiating region is
very similar to the mode of Fig. 5, at least three other modes
contribute significantly to it. When a matched termination is
specified, several modes still exhibit large current flows in the
termination region. However, they are modified such that,
upon summation, the anomalous radiating region is elimi-
nated; and, as mentioned above, the mode of Fig. 5 is not
found in the solution set at all.

Calculations were performed on a compressed antenna with
the hope that a mode that would more closely resemble the
resonant-cell postulate might be found. It was thought that the
compressed radiating region would prevent current flows on
any dipoles that were outside the resonant cell. The results

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 37, NO. 10, OCTOBER 1989

1) Feed Point Construction.
—_—3

2) Monopole Misplacement.
A

-

Front-to-side > 30 dB

% =01 Front-to-side > 18 dB
3) Axial Bending.
é #=10° Front-to-side > 25 dB
No significant resonance.
4) E-Plane Bending.
: #=10° Front-to-side > 19 dB

Fig. 6. Summary of antenna deformations studied. Note that, in (1), the feed
point asymmetry was simulated by placing the voltage source right at one of
the wires of the feeder boom rather than in the middle.

proved that this is not the case: the dominant asymmetric mode
around resonance, while strongly resembling the resonant-cell
postulate, was still not restricted to one cell.

V. ASYMMETRY CONDITIONS

Several structural asymmetries were studied to determine
the relative severity of the antenna performance degradation
caused by each. Of the five structural deformations consid-
ered, only one, monopole extension, caused strong reso-
nances. Fig. 6 summarizes the four asymmetries that produced
relatively minor sidelobe levels despite the rather large
structural deformations, all of which could be detected and
corrected from observation by the unaided eye.

Monopole extension causes the strongest resonances. In the
numerical study of the standard antenna, monopole #5t,
indicated by a dot in Fig. 3, was extended by varying amounts.
This monopole was chosen because it is in the middle of
the antenna and hence should be shielded from end effects. It is
a quarter wavelength at 956.3 MHz.

Fig. 7 displays results obtained by matrix inversion (and
confirmed by the eigenvector solution), showing the E-plane
front, side, and back lobe gain as a function of frequency for
the case of 5 and 12.4 percent monopole extension. The 12.4
percent case corresponds to (r~!—1)x 100 percent, and thus
was used to simulate the effect of an assembly worker
erroneously attaching two monopoles of the same length onto
the boom at different locations.

Even though there are increases in sidelobe levels around
572 and 667 MHz due to asymmetry resonances, the effect is
much smaller than at 779 MHz. This is because monopole #5t
was not part of the radiating region at the lower frequencies.
Extensions of 1, 2, 5, and 12.4 percent failed to change the
resonance frequency around 667 MHz by more than 0.5 MHz.
This suggests that the element is not directly involved in the
resonance but rather serves only to excite it.

At 779 MHz monopole #5t supports a large current flow on
a symmetric antenna. Fig. 8 shows the change in resonant
frequency as a function of percentage monopole extension.
The linear graph indicates that the resonance strongly depends
on the length of monopole #5t which suggests that the
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Fig. 7. Gain versus frequency for two cases of extension of monopole #5t.

Note that only the resonance around 770 MHz has its frequency changed
with the amount of extension. The peak in the back lobe level at 811 MHz is
due to the termination resonance. (a) 5 percent extension. (b) 12.4 percent
extension.
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Fig. 8. Percentage change in resonant frequency versus percentage exten-
sion of monopole #5t.
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Fig. 9. The front-to-side power ratio as a function of the percentage
extension on a log scale.

monopole is integral to the resonance. A 10 percent change in
monopole length, however, results in only a 2 percent change
in resonant frequency, suggesting that the resonance must
extend over more than one cell.

The front-to-side ratio as a function of percentage monopole
extension for both the standard and compressed antennas is
shown in Fig. 9. The linear graph on a log-log plot suggests
that a simple power law relation must hold for the front-to-side
power ratio, F as a function of percentage extension P. It is

F=320p-'8 4
for the standard antenna and

F=190p-22 (5)
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Fig. 10. Mode two on antenna with monopole #5t extended 12.4 percent at
761 MHz, an asymmetry resonance frequency. This is a remnant of a
radiating symmetric mode as may be determined by a series of small
distortions or by considering the current near the termination, far removed
from the radiating region.

for the compressed antenna. The formula for the standard
antenna yields a front-to-side ratio 5 dB lower than experimen-
tally derived by Balmain and Nkeng [3]. The discrepancy
probably comes from an inability to simulate two different
wire thicknesses.

The asymmetric component of the total current distribution
at an asymmetry resonance frequency was computed. This
component is the unbalanced current on the transmission-line
feeder together with the oppositely directed currents on the
dipoles. Given all the total currents, their asymmetric compo-
nents can be found readily, for example by calculating the sum
of the two boom currents and dividing this net current equally
between the two booms. While many modes contributed to
these asymmetric current components, the result very much
resembles the resonant asymmetric mode of Fig. 3. It is this
mode that was shown to be responsible for the high-Q
resonances.

The modes on one antenna that has had one of its monopoles
extended are neither resonant asymmetric nor radiating sym-
metric but rather hybrids of the two types (Fig. 10).
Nevertheless, it is often possible to identify corresponding
modes on a symmetric antenna just by visual observation of
the currents. Sometimes, however, the hybrids are so distorted
that the only way to determine their origin is to perform a
series of computations with increasingly large distortions.
Examination of the current far removed from the distortion
region or the radiating region may also be useful in identifying
the origin of the modes.

A few general rules seem to hold for modes on a distorted
antenna. Modes that had little current on the symmetric
antenna on the monopole that was subsequently extended were
not substantially changed by the elongation, but the inverse of
this statement is not generally true. The higher order modes
were affected less by an extension than were the lower order
modes. At asymmetry resonance frequencies, resonant asym-
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metric modes were distorted less than radiating symmetric
modes. Conversely, at frequencies removed from asymmetry
resonance, it is the set of radiating symmetric modes that
remained intact.

A 12.4 percent extension of monopole #5t caused a
maximum in sidelobe level at 761 MHz. A study of the
eigenvalues on this distorted antenna as the frequency varied
from 758 to 762 MHz revealed that no mode has a small
eigenvalue that varied quickly with frequency. Rather, the
narrow resonance was caused by the distortion of one mode
near the feed point. This, of course, has a strong effect on the
modal excitation coefficient.

VI. E-PLANE ARRAY

Log-periodic dipole antennas have been successfully used in
H-plane arrays for a number of years [12]. This configuration
was used to narrow the H-plane beamwidth which is wider
than the E-plane beamwidth on a single antenna. Further
attempts to increase gain by using an E-plane array (Fig.
11(a)), however, have revealed serious performance degrada-
tions in narrow frequency bands [1]. A decrease in front-lobe
gain accompanied by an increase in radiation to the side and
high SWR, all encountered in the case of an imperfectly
constructed antenna, are found as well with the E-plane array,
no matter how carefully the array and each of its component
antennas are constructed.

To maintain frequency-independent operation for an array,
it is necessary to place the antennas in the common-apex
configuration of Fig. 11(a). This keeps a constant separation in
terms of wavelengths between the radiating regions of the two
antennas. The performance of the array is dependent on the
angle 6 between the antenna axes. Experimental results [6] are
available, and will be presented here together with numerical
results, for array angles 25° and 30°. For the antennas used,
the minimum possible angle that would prevent overlap is
20.8°.

The asymmetry resonances are very pronounced, in both the
experiments and the computations, due to the strong asymmet-
ric couplng between the dipoles on one antenna and the feeder
on the other. As in the case of the single antenna, the wire
radius specified had an effect on the computed results. Thinner
wires lowered the frequency of both the asymmetry resonance
and the termination resonance. Thinner wires also produced
higher front-to-side ratios at asymmetry resonances and lower
front-to-back ratios at termination resonances. These are the
same trends as were exhibited in the computations involving a
single antenna.

The best agreement between theory and experiment was
obtained when the theoretical wire diameter was 3 mm,
slightly less than the 3.2 mm diameter of the wire used to
construct the booms of the antennas used in the experiment.
Table I shows the asymmetry resonance frequencies and the
accompanying front-to-side ratios determined both computa-
tionally and experimentally. Note that ‘‘front’’ refers to the
array boresight axis and ‘‘side’’ refers to the direction at 90°
from boresight and lying in the E-plane (the plane of the
array). Similarly the ‘‘back’’ lobe is in the direction at 180°
from array boresight.
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Fig. 11. (a) Definition of E-plane array and array angle, . The computed

front, side, and back lobe gain are shown for (b) 8 = 25° and (¢) 6 = 30°.
Wire radius is 3 mm.

TABLE I
RESONANCE FREQUENCY/FRONT-TO-SIDE RATIO

& =25° 6 = 30°

Computation Experiment

Computation

Experiment

592 MHz/6.8 dB 593 MHz/2 dB
688 MHz/4.6 dB 692 MHz/5 dB
804 MHz/3.7 dB 804 MHz/3 dB

598 MHz/9.0 dB
694 MHz/8.3 dB
811 MHz/8.8 dB

602 MHz/ 7.1 dB
697 MHz/ 9.8 dB
810 MHz/10.5 dB

The experimental results were judged accurate to +1 dB. A
different segmentation scheme was used to check the accuracy
of the numerical results. This shifted the 688 MHz resonance to
686 MHz and changed the accompanying front-to-side ratio
from 4.6 to 4.9 dB. It is interesting to note that the asymmetry
resonance frequency increases with increasing array angle. If
higher front-lobe gain, which is slightly higher for the larger
array angle, and higher front-to-side ratio at resonance are
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Fig. 12. E-plane array mode that radiates under in-phase excitation a
significant percentage of the total power at 688 MHz, an asymmetry
resonance frequency. Note that the current on each antenna resembles the
resonant asymmetric mode. Angle 6 = 25°.

used as criteria, the larger angle is clearly better. This is
probably due to less coupling between the adjacent antenna
cells.

The termination resonance present on an antenna array
manifests itself by an increase in back-lobe gain. It is not
dependent on the array angle for its actual frequency or the
resulting front-to-back ratio. However, it is very dependent on
the wire radius. A 1 mm wire caused dips in the computed
front-lobe gain comparable to those caused by the asymmetry
resonances. This was not the case with the thicker wire which
produced smaller dips. For both wire radii, specification of
a terminating resistor in the calculation suppressed the
resonance. Fig. 11 shows the front, side, and back lobe gain as
a function of frequency, summarizing most of the above
mentioned points.

The modes on an array no longer possess symmetry about
the top and bottom of each antenna as was the case for a single
radiator. Symmetry, however, still exists from one antenna to
the other, and again there are two types of modes. One type is
excited if the two antennas are fed in-phase so as to produce a
maximum of radiation in the direction of the apex. Out-of-
phase voltage sources, as are used in radar applications to
produce deep nulls in the boresight direction, excite the other
type of mode.

At an asymmetry resonance frequency, under in-phase
excitation, the modes that radiate significant percentages of the
total radiated power resemble the resonant asymmetric modes
on a single antenna (Fig. 12); off resonance, the modes
resemble the radiating asymmetric modes.

VII. CoNcLuSION

The method of characteristic modes produces antenna
performance predictions that are in good agreement with those
produced by standard moment-method programs. As an
analytical method to find the current distribution, the method
of characteristic modes is useful if a set of basis functions is
desired rather than a particular solution. These basis functions
are insensitive to changes in moment-method segmentation.
Because only a few characteristic modes have small eigen-
values (hence large currents), even on an electrically large and
complicated structure as is the LPDA, an understanding of
antenna operation may be derived from these dominant modes
only.
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The modes on a perfectly constructed LPDA are either
radiating symmetric or resonant asymmelric, and the
resonant asymmetric modes are not excited on an ideal
transmitting antenna because a properly designed feed point
provides symmetric excitation. In the presence of physical
asymmetry, the modes excited are hybrids of these two basic
types, hybrids which resemble the basic types for small
asymmetries; thus, it is approximately correct to assert that
physical asymmetry results in the excitation of asymmetric
characteristic modes. Because the dominant modes of either
kind have large currents in the radiating region, to suppress the
resonant asymmetric type without altering the radiating
symmetric type and without destroying the frequency-indepen-
dent nature of the antenna appears to be very difficult. For a
single antenna, the only known method for reduction of
asymmetry resonance excitation is increased conmstruction
accuracy, and this paper provides additional information on
the kind and magnitude of accuracy required. The study of
various antenna deformations shows that the LPDA perform-
ance is degraded most by asymmetries in dipole length. Other
asymmetries, such as monopole bending, monopole misplace-
ment and feed-point offset, cause relatively weak resonances,
if any at all. In an E-plane array, modes that are hybrids
between the two types of modes found on a single antenna are
strongly excited; hence, the reduction of the asymmetry
resonances is difficult and can be achieved only by increasing
the separation between the component LPDAs in the array.

The termination resonance occurs on perfectly symmetric
antennas having a short-circuit feeder termination at the large
end of the antenna. This resonance emerges as a sum of
characteristic modes, two of which penetrate into the normally
unexcited large end of the antenna and one of which exists only
in this region. When the short circuit is replaced with a
matched feeder termination, the former two modes cancel each
other and the latter mode vanishes. In an E-plane array, these
properties of the termination resonance are the same as in a
single antenna.

The computer program used is limited to a single conductor
radius for the entire antenna although the experimental
antennas referred to employed feeder conductors with a radius
larger than the radius used for the dipoles. This discrepancy is
deemed not to influence the conclusions reached because the
computed modal current distributions were found to be
independent of conductor radius over the range from the
smaller to the larger of the two radii used in the experiments.
Moreover, the best agreement between predicted and mea-
sured parasitic resonance frequencies occurred for a computa-
tional model with a conductor radius between the two
experimental values, and the predicted and measured sidelobe
levels at resonance frequencies were found to be comparable.

APPENDIX

As mentioned in the main body of the paper, there were
some changes noted in the moment method solution of
Richmond’s program [9] when the segmentation was varied.
Of importance was the unexpected change in the solution upon
renumbering of segment endpoints. The renumbering problem
was found to be due to the treatment of the computed mutual
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Fig. 13. Arrangement of segment axes for the example dipole-to-dipole
mutual impedance problem. Boxed numbers denote monopoles, circled
letters denote dipoles, and unenclosed numbers denote axis point numbers.
Arrows indicate reference directions for current flow.

impedance matrix as being reciprocal, i.e., computing only
the upper right triangular portion of the matrix (including the
main diagonal) when, in fact, the mutual impedances as
actually computed were not always reciprocal.

The problem of non-reciprocity was found to be caused by
the way in which the mutual impedance between an expansion
dipole and a testing dipole is computed. The dipole-to-dipole
mutual impedance is computed as the sum of four filamentary
monopole-to-monopole mutual impedances. Each monopole
spans a wire segment. In a monopole-to-monopole mutual
impedance computation, the two monopoles are placed on
their respective segment axes unless the axes intersect or are
coincident. If the axes are coincident, the monopoles are offset
from one another by a wire radius in any direction orthogonal
to the common axis. If the axes intersect, the monopoles are
offset from one another by a wire radius in a direction
orthogonal to the plane containing the two axes.

Consider a specific example of a dipole-to-dipole mutual
impedance computation. Fig. 13 shows the configuration, with
point numbers on the wire axes that define the span of the two
dipoles and their four associated monopoles (two monopoles
per dipole). The mutual impedance between the two dipoles is
composed of four monopole-to-monopole impedances as
follows:

Zay=Zi3+ Zy4+ Zoy+ 24

Zba=Zgl+232+Z41+Z42. (6)

Of the above pairs of monopoles, those requiring an offset are:
2-3 and 2-4. Pairs 1-3 and 1-4 do not require an offset because
their associated wire axes do not intersect. Fig. 14 shows a
possible monopole geometry that satisfies the offset require-
ments. Note that monopoles 1 and 2 are offset relative to one
another causing dipole @ to be broken, while dipole b is
continuous. To satisfy the continuity equation, there must be
equal and opposite point charges on monopoles 1 and 2 at the
dipole break. With the equation of continuity satisfied, the
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Fig. 14. Monopole locations for the example dipole-to-dipole mutual
impedance computation.

mutual impedance between dipoles @ and b is reciprocal.
However, Richmond’s program neglects the contribution to
the E-field of the electric scalar potential gradient for the point
charges when computing mutual impedance by using the
following integral (where the current at the terminals is unity):

Z= — S E, - J,dV. D

Neglecting the point charges will affect E, but not E,. Hence,
Z,, will be affected but not Z,,, and reciprocity cannot hold.
To restore reciprocity to the broken dipole case, we
modified the monopole-to-monopole mutual impedance com-
putation to make it reciprocal. The modification involves
including the point charges as follows: the point charge
contribution to the mutual impedance is proportional to the
integral of the point charge electric scalar potential gradient of
one monopole dotted with the current of the other monopole.
This was neglected in the original program. Integration by
parts yields an equivalent integral which is the integral of the
point charge electric scalar potential of one monopole multi-
plied by the charge (distributed charge plus point charge) of
the other monopole. Only the point-to-distribution term of this
integral was included. This involved modification of subrou-
tine GGMM in the original program. The point-to-point term
was not included because its contributions to Z,, and Z,, are
the same, and therefore its inclusion is not necessary to bring
reciprocity to the monopole-to-monopole mutual impedance.
The renumbering problem in Richmond’s program not only
caused slightly different solutions upon renumbering of points,
but also caused apparent ‘‘computer-generated asymmetry’’ in
a physically symmetric problem, as noted by Vainberg and
Balmain [5] in their computation of E-plane side radiation
from a symmetrical log-periodic dipole antenna. Any signifi-
cant side radiation must come from asymmetry in the boom
current. In the present work and before the program modifica-
tion described above, it was found that with one particular
numbering scheme there was no significant computer-gener-
ated asymmetry, while with other numbering schemes there
was. The present modification yielded the same result for any
numbering scheme (the same result, moreover, as from the
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original program using the numbering scheme that did not
display incorrect asymmetry.)
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