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Abstract—An implementation of the moment method for electromag-
netic analysis of multiradius thin-wire structures, including multiwire,
multiradius junctions is presented. It is entitled the multiradius bridge-
current (MBC) moment method. It is an extension of the authors’
uniradius bridge-current reformulation of Richmond’s uniradius thin-
wire theory. The method features an exactly symmetric mutual
impedance matrix ensuring reciprocity between sources, it is uncon-
strained with respect to both the length ratio and the radius ratio of
adjoining segments provided that the wires are electrically thin, and it
permits the self-consistent inclusion of coaxial-cable sections in the
configuration under analysis. The method is validated through compari-
son with transmission-line theory for a two-wire line and a coaxial cable,
and through comparison with measurements on a sleeve monopole
antenna and a log-periodic dipole antenna. Finally, the MBC moment
method program is shown to surpass the Numerical Electromagnetics
Code (NEC) in terms of reciprocity and convergence for both an AM
broadcast tower detuning stub problem and a bent two-wire transmis-
sion-line problem.

1. INTRODUCTION

WELL-KNOWN moment method computer program for

the electromagnetic analysis of uniradius thin-wire struc-
tures is that of Richmond [1]. It has been shown by Butler
and Wilton [2] that the particular method of expansion and
testing, which they term ‘‘Pocklington piecewise-sinusoid
Galerkin,”” is one of the best methods for obtaining rapid
convergence in the solution. Although very useful, Rich-
mond’s program can display asymmetric artifacts when used
to analyze certain symmetric structures, a problem that was
observed by Vainberg and Balmain [3], explained and cor-
rected approximately by Hilbert, Tilston, and Balmain [4],
and finally corrected more completely by the authors in their
‘“bridge-current’’ formulation [5]. In the present work, the
bridge-current formulation is extended to allow solution of
the multiradius problem.

II. DEesSCRIPTION OF BRIDGE-CURRENT MOMENT METHOD
VERSIONS

A. Uniradius Bridge-Current Version

The uniradius bridge-current version forms the starting
point for the multiradius bridge-current version. The unira-
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dius version is described in detail in [5], and is described
here briefly because it is necessary in order to explain the
multiradius version.

The wire structure to be modeled consists of straight wire
segments all of the same radius, and usually shorter than a
quarter-wavelength. Conceptually, a current expansion func-
tion is a tubular dipolar current spanning the surface of two
adjoining wire segments that are not necessarily collinear.
Each expansion function has a corresponding indentical tubu-
lar testing function, in a coincident location. The current on
each segment-is axially directed, sinusoidally distributed,
continuous at the segment junction, and zero at the other end
of each segment. The total current at the junction is unity.
The mutual impedance between a tubular expansion dipole
and a tubular testing dipole is composed of four tubular-
monopole-to-tubular-monopole mutual impedances.

The mutual impedance between a tubular expansion
monopole and a tubular testing monopole is approximated by
the mutual impedance between two filamentary monopoles
that are placed on their respective segment axes unless the
axes intersect or coincide. If the axes coincide, the expansion
monopole is offset by a wire radius in a direction orthogonal
to the coincident axes. If the two axes intersect, the expan-
sion monopole is offset by a wire radius in a direction
orthogonal to the plane containing both axes.

Now consider one testing monopole and two expansion
monopoles that form an expansion dipole. With certain ge-
ometries, the filamentary expansion monopoles may be offset
from their segment axes in different directions, thus forming
a dipole that is broken at its vertex. This would occur, for
example, if the segment axis of one, and only one, of the two
expansion monopoles was coplanar with (but not parallel to)
that of the testing monopole. In such a case, the break is
bridged by a straight, uniformly distributed ‘‘bridge current.”’
With this geometry, the bridge current is orthogonal to the
testing monopole. Because of this orthogonality, and because
of its uniform current distribution, the bridge current does
not contribute to the following symmetric integral form for
the mutual impedance Z,, between a filamentary testing
monopole a and a bridged filamentary expansion dipole b

[5):
Zuy =i [[ | 0.6 - 2,00)

1
+ 4—“%(")%(") R

dv'dv (la)

where
R =

(15)
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Fig. 1. Filamentary currents used to compute approximately (a) the self-impedance Z 4 4> and (b) the mutual impedance Z, 5, of
tubular dipoles. Circled letters and boxed numbers indicate tubular dipoles and monopoles. Dots denote endpoints of filamentary
monopoles. ¢; is a filamentary monopole having a longitudinal current distribution equal to tubular monopole j, and lying on the
axis of j. s;; is a filamentary monopole having longitudinal current distribution equal to tubular monopole #, but displaced from
the axis of / in a manner that depends on tubular monopoles i and j. BC denotes bridge current, and a; is the radius of monopole
i. The point charge contribution of any monopole ¢ '; is neglected.

and J and p are volume current and charge densities (unit
terminal currents have been assumed). Thus the symmetric
mutual impedance integral requires explicit computation of
only the monopole-to-monopole mutual impedances which
involve the monopole currents and the distributed charges.
There are no point charges as the segment ends because
current continuity is ensured due to the presence of the bridge
current.

B. Multiradius Bridge-Current Version

Just as with the uniradius bridge-current version, the multi-
radius bridge-current version approximates the mutual
impedance between tubular expansion and testing monopoles
by using the mutual impedance between approximately equiv-
alent filamentary expansion and testing monopoles. However,
the amount of offset, if required, is modified to become the
greater of the two segment radii. This offset is identical to the
uniradius offset in the limiting case where the two segments
are of equal radius. In addition, this offset scheme is valid in

4 ~ I,
a4/ d BC || S«
Su /\{/ |r »_BC
S5 () a, _.lL Sa
AL |2
o o ——
// te
// Sy =Sy + 8, Sgo = S5, + Sy,
+BC +BC

the limiting case where the radius of one segment is arbitrar-
ily small and both axes are coincident (i.e., the segments are
collinear). In this case the equivalence of mutual impedance
between the pair of tubular monopoles and the pair of
filamentary monopoles is exact because of symmetry. Exam-
ples showing the offsets involved in a dipole self-impedance
and a dipole-to-dipole mutual impedance are given in Fig. 1.

Filamentary monopole-to-monopole mutual impedances are
computed using (la) without point changes. Apart from the
inclusion of the monopole offsets as discussed above, the
calculation of the inner products arising in (1a) is identical to
the calculation described in [5] for the uniradius case. As
with the uniradius version, a multiradius bridge current does
not contribute to (1a) because of its orthogonality and uni-
form distribution.

With the above offsets and bridge currents, the mutual
impedance between two filamentary monopoles does not de-
pend on which one is the expansion monopole and which one
is the testing monopole. The same must therefore be true of
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Fig. 2. Quarter-wave two-wire stub. (a) Feed points and dimensions. (b)
Equivalent transmission line circuit. (c) Equivalent lumped element cir-
cuit. (d) Reactance for a frequency of 99.93 MHz and infinite conductiv-
ity. Transmission line theory (solid line) and MBC moment method
computations (circles) are given for the segmentation shown.

filamentary dipoles. Thus, the dipole mutual impedance ma-
trix is symmetrical. This is a necessary and sufficient condi-
tion for reciprocity to hold exactly between sources in the
presence of any thin-wire structure that is modeled by the
moment method.

III. VALIDATION OF MULTIRADIUS BRIDGE-CURRENT
MoMENT METHOD

Computations using the multiradius bridge-current (MBC)
program will be compared with transmission-line theory for a
resonant two-wire stub and a resonant coaxial cable stub, and
compared with measurements for the sleeve monopole an-
tenna and the log-periodic dipole antenna. Other structures
that have been successfully analyzed by one of the authors [6]
include the electrically small rectangular loop, the folded
monopole antenna, and the bazooka-balun-fed dipole an-
tenna.
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Fig. 3. Conductance versus length for sleeve monopole antenna. Dots and
solid line denote measurements and MBC moment method computations
respectively, for case 1. The dashed line denotes MBC moment ‘method
computations for case 2. In both cases, moment method computations
include 15 segments in each of wires 1 and 2, and excitation by a frill
source whose inner and outer radii are 0.003175 X and 0.01459 A.

The MBC moment method program was written in Fortran
77, and used double precision for all complex numbers and
functions. The double precision was previously found to be
necessary to obtain accurate input resistances for electrically
small structures [5].

A. Resonant Two-Wire Quarter-Wave Stub

Transmission-line theory and the MBC moment method
were used to compute the input reactance for the two-wire
transmission line stub shown in Fig. 2(a) for varying wire
radii as shown. The line has a width of 7.5 mm and a length
of 750 mm, which is 0.25 \ at the test frequency of 99.93
MHz. The transmission line is short circuited at one end, and
open circuited at the other.

Fig. 2(b) shows the equivalent transmission line circuit.
The self-inductance Lg of the short-circuiting wire is approx-
imately the same as the mutual inductance between two
parallel filamentary currents spaced a wire radius apart.

The input reactance, as defined in Fig. 2(c), was computed
with transmission-line theory and with the MBC moment
method. The results are plotted in Fig. 2(d) for the transmis-
sion line with characteristic impedance varying between 212
and 1044 Q. They show that good agreement was obtained,
to within 0.2 Q, despite the large difference in joined seg-
ments, with segment radius ratios of up to 10°, and a
longest-to-shortest segment length ratio of 50.

B. Sleeve Monopole Antenna

The sleeve monopole antenna consists of a coaxial cable
that extends vertically up above a ground plane for some
length, and has the outer conductor and dielectric filling
removed over an upper portion of the length, as depicted in
Fig. 3. The surface between the cut end of the outer conduc-
tor and the inner conductor is considered to be an aperture.
The impedance is defined as the voltage from the outer
conductor to the inner conductor at the aperture plane, di-
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Fig. 4. Susceptance versus length for sleeve monopole antenna. Dots and

solid line denote measurements and MBC moment method computations,
respectively, for case 1. The dashed line denotes MBC moment method
computations for case 2. In both cases, moment method computations
include 15 segments in each of wires 1 and 2, and excitation by a frill
source whose inner and outer radii are 0.003175 X and 0.01459 A.

vided by the current on the inner conductor at the aperture
plane.

In the moment method analysis, the aperture is filled in
with a perfect electric conductor, and an equivalent voltage
source is introduced just above the aperture.

MBC moment method computations of the admittance of a
sleeve monopole antenna have been compared with measure-
ments by Taylor {7], for the geometry shown in Fig. 3.
Initially, poor convergence in the moment method was ob-
served, which was found to be due to the use of a delta
source in combination with the relatively large electrical
radius of the lower section of the antenna (0.015 N).

A delta source is an infinitesimal source that produces a
delta function of incident electric field along a testing
monopole (whether tubular or filamentary) resulting in a
single nonzero term in the moment method column matrix for
voltage, A frill source is a finite-width magnetic current ring
which is more realistic, as described in the Appendix. In
order to compute the moment method excitation voltages,
each tubular testing monopole is approximated by a filamen-
tary monopole lying on the axis of the tube. This approxima-
tion greatly simplifies the computation of the reaction be-
tween the source and a testing current.

Good convergence with the frill source was observed when
the lengths of the upper and lower sections on the antenna
were each 0.15, 0.20, 0.35, and 0.45 wavelengths. The 0.45
wavelength case had the slowest convergence rate, requiring
at least 15 segments on each antenna section. This number of
segments was selected to be used for all the following
computations.

Figs. 3 and 4 compare the computed and measured conduc-
tance and susceptance versus the length of each antenna
section in wavelengths, shown as case 1. The conductance
shows excellent agreement between computations and mea-
surements, with the computed peaks appearing to coincide
very well despite their sharpness. The susceptance curves are
seen to agree well in shape but the computed values generally
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need to be shifted upward by 0.5 mS to agree with the
measured ones. This shift is not a large amount, considering
that it is equivalent to placing a 0.27 pF capacitor across the
aperture.

The dashed lines in the figures are MBC moment method
computations for case 2, which is similar to case 1, except
that the radius of the lower half of the monopole is reduced to
equal that of the top half. However, the frill source remains
unchanged. This case is included to show that the radius
change significantly affects the admittance curves.

It was noted that when the number of segments per antenna
section was increased beyond a certain point, the solution
diverged. This point corresponds approximately to a segment
length-to-radius ratio of one. The divergence probably repre-
sents a failure in the filamentary current approximation for
small segment-to-length ratios, as covered by Miller and
Deadrick [8], and by Imbriale [9]. It might be overcome by
using surface testing without approximation, as done by
Imbriale [9] for a uniform dipole antenna.

C. Log-Periodic Dipole Antenna

Log-periodic dipole antenna (LPDA) analyses and mea-
surements have been done by Vainberg and Balmain [3].
They investigated asymmetry resonances produced on
LPDA’s in which the symmetry was destroyed by the exten-
sion of one of the monopoles on the antennas. Their analysis
used a uniradius computer model to approximate the multira-
dius physical antenna. This was done to enable them to utilize
Richmond’s (uniradius) thin wire moment method program
[1]. It was noted that the program predicted significant
asymmetry resonances even on a symmetric antenna model.
This defect in the program was explained and corrected
approximately in the paper by Hilbert, Tilston, and Balmain
[4] on the subject of resonance phenomena of the LPDA. A
more complete correction is given by Tilston and Balmain [5]
in their uniradius bridge-current version of the program. In
the present paper, computations with the MBC moment-
method program are compared with measurements of the
antenna side radiation for an asymmetrical antenna. This side
radiation is due to unbalanced current in the two boom wires,
and thus is a measure of the strength of the asymmetry
resonance phenomenon.

The antenna has 14 monopole elements, labeled 1a,
1b,- -+, 7a, 7b, as shown in Fig. 5(a). Also shown in the
figure and caption are all wire dimensions. Monopole 5a is
2.9% longer than monopole 5b, in order to provide a physi-
cal asymmetry which will result in side-radiating resonances.

The antenna side radiation versus frequency is shown as
the # = 90° values in Fig. 5(b). The solid line shows results
of the multiradius analysis, while the dashed line shows
results of a uniradius analysis in which the boom diameter
and spacing are scaled down by a factor of 2.01 so that the
boom conductors are equal in radius to the monopole wires,
while the characteristic impedance of the boom conductors
remains unchanged. The uniradius results are essentially the
same as those obtained by Vainberg and Balmain [3]. They
show four weli-defined resonant peaks that are similar to the
measured values, except that they are shifted downward in
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Length z
Monopole (mm) (mm)
1a, 1b 137.4 -222.0
2a, 2b 122.4 -139.5
3a, 3b 109.1 -65.5
4a, 4b 97.0 0.0
5a 89.6 58.3
5b 87.1 58.3
63, 6b 78.0 111.0
7a,7b 69.8 157.0
/ 7b source position: 194.5
z load position: -267.0
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Fig. 5.
cases of geometry are considered: a multiradius case in which all

Log periodic dipole antenna. (a) Segmentation and dimensions in computer model. Dots denote segment endpoints. Two

wires are 3.18 mm in diameter except for the z directed boom

wires which are 6.40 mm in diameter, with D = 14.6 mm; and a single radius case in which all wires including the boom wires
are 3.18 mm in diameter, with D = 7.26 mm. (b) E-plane theta-polarized gain versus frequency for the geometries in (a). Solid
dots are measured values, and lines are computed with MBC moment method. Solid lines and solid dots are for the multiradius

case. The dashed line is for the single radius case.

frequency by approximately 6%, or one third of the spacing
between peaks. The multiradius results are seen to be in
much better agreement with measured values in terms of
resonant frequencies, with a shift in resonant frequency of
0.8% or less. The levels of the four resonant peaks are
predicted to within 1, 2, 4, and 14 dB as frequency increases.
This increasing error probably is due to the fact that, above
660 MHz (between the second and third resonances), the
boom conductor radius exceeds the 0.007 A upper limit
originally specified by Richmond for thin-wire theory with a
delta source as used in this computation.

D. Coaxial Cable Stub

Because the filamentary current distributions for testing
and expansion currents in the MBC moment method are
approximately equivalent to tubular surface distributions of
testing and expansion currents, it should be possible to use
filamentary currents to analyze structures containing thin
concentric cylinders such as coaxial cables. To investigate

this, an MBC moment method analysis of a coaxial cable stub
was set up as follows for comparison with transmission line
theory.

Consider the coaxial cable stub shown in Fig. 6(a). It has
three tubular current-carrying surfaces consisting of the inner
and outer surfaces of the outer conductor, and the single
surface of the inner conductor. The frequency is 299.8 MHz,
and the conductivity is 57 MS/m. Note that, in the moment
method analysis, current is allowed to flow radially around
the upper lip of the outer conductor, although not much
would be expected. However, no radial current is allowed to
flow on the bottom surface of the outer conductor, or the top
surface of the inner conductor. All radial currents have zero
divergence (i.e., no associated charge) because they are
represented by uniform bridge currents in the filamentary
current approximations.

The transmission-line theory included a series resistance
per unit length using the same surface resistance R on the
tubular metal surface as for a flat metal plate, i.e., the real
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Note: Tubular surfaces with common endpoint numbers are
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Fig. 6. Computational model of coaxial cable open-circuited stub. (a)
Cross section showing dimensions. (b) Schematic showing axes of tubular
surfaces as solid lines, and endpoints of the axes as dots and numbers.

Each number represents a distinct electrical connection or a free end. (c)
Specifications of tubular surfaces for program input.

part of the intrinsic impedance of the metal, which is

w
OF 4.557 x 1073 Q.
20

R, =
The resistance per unit length of a cylindrical surface is the
surface resistance divided by the circumference of the cylin-
der, which yields 1.012 Q/m for the inner conductor and
0.440 Q/m for the inner surface of the outer conductor. The
sum of these two values is 1.452 Q/m which is the total
series resistance per unit length of the transmission line. The
shunt conductance per unit length is zero. The series induc-
tance and shunt capacitance per unit length of the line are
0.1668 pH/m and 66.71 pF/m. Under lossless conditions,
these would yield a characteristic impedance of 50 .

Computations of resistance and reactance for line lengths
between 0.1 and 0.6 \ were done using the MBC moment
method and transmission-line theory, as detailed by Tilston
[6]. The MBC moment method model used three segments
per tubular surface. MBC moment method computations
generally agree with transmission-line theory to within 2%
for both resistance and reactance (voltage reflection coeffi-
cients agree to within 5 x 107> in magnitude and 1.4° in
phase).

It was noted that in the MBC results, current flowed
radially over the upper lip of the outer conductor. The
magnitude of this current was 17% of the generator current
when the length was 0.25 A.

An alternative moment method analysis was done in which
the wall thickness of the outer conductor was reduced to
zero. Thus, the outer conductor’s outer and inner surfaces
formed one single surface. This was modeled using only the
first two of the three surfaces defined in Fig. 6(c). The MBC
moment method computations using this model agreed as
well with transmission-line theory as did the computations
with the finite wall thickness.
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The above comparisons were repeated for a short-circuited
stub, and similarly good agreement was found.

Dielectric-filled coaxial cables have also been modeled
using a procedure contained in Richmond’s uniradius pro-
gram for modeling a wire segment covered with a dielectric
sheath [1]. The formulation involves replacing the dielectric
with an equivalent electric current density J,; radiating in the
ambient medium. Approximations are made that render J; an
easily computed quantity which is dependent on the local
charge density on the wire. Thus no unknowns are added to
the problem with the addition of the dielectric sheath.

The above coaxial stub examples were repeated, but repre-
senting RG-58 (dielectric filled) cable. The dielectric filling
was treated as a dielectric sheath covering the inner conduc-
tor of the coaxial cable. The cable had radii of 0.538, 1.90,
and 2.40 mm for three tubular surfaces. The conductor
conductivity was 57 MS/m, and the dielectric had a relative
permittivity of 2.3 and a loss tangent of 5 X 10™*. For any
line length between 0.1 and 0.6 wavelengths (in the dielec-
tric), the voltage reflection coefficients computed by the MBC
moment method and by transmission-line theory differed by a
maximum of 5 x 10~ in magnitude and 1.6° in phase for
an open-circuited termination, and 5 x 10™* in magnitude
and 2.9° in phase for a short-circuited termination.

These moment-method computations with the dielectric
required six segments per tubular surface for convergence,
compared with three segments for the previous air-filled
cable. In addition, although the accuracy for the dielectric-
filled cable was lower, it would probably be acceptable for
many applications.

IV. CompaRrisoN BETweeN THE MBC anp NEC
PROGRAMS

In this section, comparison between the multiradius
bridge-current thin-wire moment method program and the
Numerical Electromagnetics Code (NEC) [10] is given. The
intent is not to make an extensive comparison, which would
require coverage of a wide range of situations and many
computations. Rather, the intent is simply to show that there
are important cases in which the MBC moment method
excels.

NEC is chosen for comparison because it is a well re-
spected and widely used program. Version 1 is used here, but
similar results have been obtained elsewhere using version 3
[11].

Two examples are selected for analysis. One involves a
detuning stub used to minimize reradiation from a grounded
tower near a monopole antenna in the AM broadcast band.
The other involves a bent two-wire transmission line whose
dimensions are typical of what one would find with conduct-
ing traces on a printed circuit board.

Because NEC uses single precision arithmetic and func-
tions, a single-precision version of MBC is also used.

A. Tower Detuning Stub

Consider a simplified example of reradiation in the AM
broadcast band, as depicted in Fig. 7(a). At the frequency of
1 MHz, the wavelength is approximately 300 m. Two towers
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Fig. 7. Magnitude of mutual admittance between ports in detuning stub
probiem. (a) Geometry and port definitions. (b) Computations with MBC

and NEC moment method programs. The two shortest wires have one
segment each, while the remaining three wires have N segments each.

75 m (0.25 N) in height and 1 m in diameter are separated by
300 m (1 N). The tower on the right represents a transmitting
antenna. The one on the left represents some parasitic tower,
which could be used to support an FM broadcast antenna for
example. In order to reduce the amount of reradiation from
the parasitic tower, a detuning stub has been added, consist-
ing of wire 1 cm in diameter, and spaced 3 m from the tower
axis. A common method of testing the effectiveness of the
stub is to measure the base current of the parasitic tower
(with a small loop antenna). This procedure is simulated on
the computer, given a 1 V source at the base of the transmit-
ting antenna. In other words, Y,, is computed. As a check
on the numerical solution, the reciprocal quantity Y,, is also
computed. Any difference between these two admittances
indicates inaccuracy. )

Computations of the mutual admittance magnitudes versus
segmentation are shown in Fig. 7(b). A wide variation in
results is seen. The MBC results show good convergence and
exact reciprocity. With N = 7, the mutual admittance is
0.1877 mS with the stub, compared to 4.554 mS without the
stub. This corresponds to a 28 dB reduction in base current
due to the stub. The NEC results show significant nonre-
ciprocity even though the Y,, appears well converged; how-
ever, Y|, begins to diverge for N > 10.

It should be mentioned that, in NEC, the ‘‘applied E-field”’
source was used. For comparison, the ‘‘current slope discon-
tinuity”> source was also tested. At a test segmentation of
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Fig. 8. Mutual susceptance between ports in bent two-wire transmission
line. (a) Geometry and port definitions. (b) Computations with the MBC
and NEC moment method programs. The four shortest wires have one
segment each, while the remaining four wires have N segments each.
Transmission line theory result is 8.61 mS.

N =17, the new NEC results were similar to the previous
ones, except that the nonreciprocity error was somewhat
worse. It was also found that the ‘‘extended thin wire kernel’’
option made no significant difference. This was probably due
to the fact that the thickest wire was only 0.0033 X in radius.

B. Bent Two-Wire Transmission Line

This example is a simplified representation of a small
portion of a printed circuit board. One must be able to
analyze this problem successfully, if one wishes to compute
circuit board radiation or susceptibility. Fig. 8(a) represents
two conducting traces on a printed circuit board that run from
a pair of pins on one integrated circuit chip to a pair on
another. The two wires, which represent traces, can carry a
transmission line mode and a radiating mode. Only the
transmission line mode is dealt with here: this is done by
placing a shorting wire across each end of the transmission
line. In the analysis, the four shortest wires, including the
two short-circuiting wires, have one segment each, while
each of the remaining four wires has a variable number of
segments N. All wires are 0.1 mm in radius and the fre-
quency is 299.8 MHz.

Computations of the mutual susceptance B,, versus seg-
mentation are shown in Fig. 8(b). B,, was also computed,
but is not shown because there was no significant nonre-
ciprocity in either program. The MBC computations are seen
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to be extremely well converged, even when N = 1. As a
check, B,, was also computed with transmission line theory,
ignoring the effects of bends in the line and the inductance of
the shorting wires. The result was 8.61 mS, which compares
well with the value of 8.34 mS obtained by MBC for all N.
It can be seen that the NEC results do not converge and are
in poor agreement with transmission line theory.

V. CoNCLUSION

The multiradius bridge-current moment method implemen-
tation presented herein has been validated through compari-
son with transmission-line theory and with experiments. The
validation process involved the analysis of the following
multiradius thin-wire structures: a resonant two-wire stub, a
sleeve monopole antenna, a log-periodic dipole antenna, and
a resonant coaxial cable stub. The latter case demonstrated
the MBC moment method program’s capability to model thin
coaxial cables in a way that is both simple and self-con-
sistent; moreover, it is shown that a dielectric-filled coaxial
cable can be modeled very simply by utilizing an established
representation for a dielectric sheath around a wire.

Some of the wire modeling quantities that the program has
handled successfully in the above examples include a maxi-
mum wire radius ratio of 105 for joined wires, a maximum
segment length ratio of 50 for joined segments, a maximum
of three coaxial tubular conducting surfaces, a minimum
segment length of 0.0025 A, and a minimum segment length-
to-radius ratio of one. These quantities are not necessarily
limits of validity: they are merely examples that were stud-
ied. They show that the program allows the accurate and
stable modeling of a very wide range of wire structures.

The multiradius analysis of the asymmetric log-periodic
dipole antenna, including explicit modeling of the boom, has
not previously been done, to the best of the authors’ knowl-
edge. The presented MBC moment method results agree well
with measurements of the asymmetry-resonance frequencies
and side-radiation levels. To obtain this agreement, it was
necessary to use the physical boom dimensions for the wire
radius and spacing, rather than the scaled-down dimensions
that were previously used to permit a uniradius analysis. This
establishes that the LPDA boom plays a crucially important
part in the asymmetry resonance phenomenon. Moreover,
this example shows that the LPDA provides a good general
test case for a computational technique because it contains
multiradius multiwire junctions, parallel wires carrying trans-
mission-line modes, wires with free ends, and closed wire
loops.

The MBC moment method is shown to perform better than
NEC with respect to convergence and reciprocity for both an
AM broadcast tower detuning stub problem, and a bent
two-wire transmission-line problem.

APPENDIX

This Appendix derives the excitation voltage of a filamen-
tary monopole of electric current due to a frill of surface
magnetic current. Only the case in which the frill axis
coincides with the monopole axis is covered here.
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The excitation voltage V; of a monopole j due to a general
source of magnetic current M, according to Richmond [12,
eq. (12)] equals the following reaction between the monopole
and the general source (assuming unit terminal currents):

Vj=~/H,--Mgdv (2a)

/Eg-Jj dv. (2b)

The second equation can be obtained from the first by
applying the reciprocity theorem. For convenience, we will
use the first equation.

Let the monopole be a linear electric current I; on the z
axis, flowing between points z, and z,, and having unit
feed-point current.

sinhy(z — 2
P S AS I v(z-2) (32)
sinh y(z; — z,)
1 2

Z me~MYRieMY2

I ——mF— 3b
2sinhy(z; — z;) =1 (30)

where j=1lor2,/=2/j,m=(-1)?"'and z, < 7 < z,.
The magnetic vector potential A ; is

o z; e 'R
A (r) = — I,(z daz’ 4a
0= U (42
% 2
= ____.___z.ﬁ________ meY™m(z=2)
8wsinhy(z; — z;) p=1
w(z) e
/ Y (4b)
u

u(zy)

where R = [p? + (2 — 2)*1'% and u(z) = v[R — m(z’
- 2)].
The magnetic field strength H; is

1 94,
—VXA;= 72

H.=
[ p 9p

J (%)

Now consider a frill of magnetic surface current, centered
at the origin, whose axis coincides with the z axis. The frill
has inner radius @ and outer radius b. The surface current
M, has the same distribution as the E field in a coaxial cable,
as follows:

M —Yo 5 b
=——¢, asp<h,
/" plnb/a
Note that the total ¢-directed magnetic current is — V;, V.
The E field of a frill is given by Butler and Tsai [13]. That
would be required if we were using (2b). However, we will
use (2a) instead, as follows:

(6)

b 27
v, —/ H, M,pd¢dp (7a)
a 0

27V, /b(’)AjZ do
a 0p

" win(b/a) )
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" 4In(b/a)sinhy(z; - z,)

Y (-1
h=1

2

> mem
p=1
u(zy, o) e ¥

—du
u

(7¢)
u(zy, pp)
where u(z’, p) = y([2'* + p*]'> = mz’), p; = aand p, =
b.

Note that the integration variable u is a complex constant
multiplied by a real function. The integration path is there-
fore a straight line on the complex plane. The function

wia(uy, u) = /

U

u, g~ ¥4

du (8)

u

for a straight line path is evaluated in Richmond’s original
program [1].
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