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Abstract—The original version of the thin-wire frequency-domain
moment-method program developed by Richmond has been modified
to suppress the computation of nonphysical asymmetric fields. Rich-
mond’s implementation uses piecewise sinusoidal expansion and testing
functions, along with filamentary current approximations. A modified
version is described, termed the bridge-current version. The original
program and the modified version are compared with each other and
with simplified theory, where applicable, on the following symmetrical
structures: a rectangular wire loop, a two-wire transmission line, and
a log-periodic dipole antenna. The bridge-current version is shown to
eliminate the computation of nonphysical asymmetric fields, to be essen-
tially invariant with respect to variations in segmentation for the above
structures, and to produce results that compare well with simplified
theories where applicable. It is noted that the bridge-current version is
particularly advantageous for structures that include close-spaced par-
allel wires connected by short wire segments.

I. INTRODUCTION

A thin-wire frequency-domain moment-method program was de-
veloped by Richmond [1] to analyze antennas and scattering struc-
tures that can be modelled by interconnected wire segments. This
program has been found to be very useful for a wide variety of prob-
lems in which experimental validation was employed. For example,
the program has been used by Vainberg and Balmain [2] to ana-
lyze asymmetry resonances in log-periodic dipole antennas, and by
Silva, Balmain, and Ford [3] to analyze the reradiation of medium
frequency AM broadcast signals by steel-tower power lines.

Despite the program’s usefulness, it has the defect that its re-
sults can depend on the numbering scheme of segment endpoints. In
addition, it can predict asymmetrical currents in a structure whose
geometry and excitation are symmetrical. Examples of the renumber-
ing and asymmetry problems will be discussed later for a rectangular
wire loop, a two-wire transmission line, and a log-periodic dipole
antenna.

The program computes the mutual impedance between expansion
and testing functions only for elements in the upper right triangular
portion (including the main diagonal) of the moment method mutual
impedance matrix. It is assumed that the mutual impedance elements
are symmetrical. However, as shall be shown later, this assumption
can be incorrect because of approximations in the implementation
of the moment method, resulting in the renumbering and asymmetry
problems mentioned above. A solution is to modify the method in
order to produce truly symmetrical mutual impedance elements. This
solution has the desirable features of producing reciprocity between
ports on the wire structure as there should be in reality, and allowing
minimal matrix inversion time and computer storage requirements
because of the symmetrical matrix.
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Fig. 1. Arrangement of segment axes for the example dipole-to-dipole mu-
tual impedance problem. Boxed numbers denote monopoles, circled letters
denote dipoles, unenclosed numbers denote axis point numbers. Arrows
indicate reference direction for current flow.

II. RiciMOND’s ORIGINAL PROGRAM

In the concept behind the original program, the current expansion
functions are set up as overlapping tubular dipolar distributions of
piecewise-sinusoidal surface current. The current of an expansion
dipole is axially directed, has a piecewise-sinusoidal distribution in
the axial coordinate, and has no azimuthal variation. Each arm of a
dipole (i.e., monopole) spans one wire segment. Each junction of N
segments is the vertex of N — 1 independent dipoles.

In Richmond’s formulation, each expansion function has a corre-
sponding testing function that spans the same length of wire, and
has the same axial distribution of current, but has a different cross-
sectional distribution which is filamentary along the wire axis. Be-
cause of the latter difference between an expansion function and its
corresponding testing function, the mutual impedance matrix is not
precisely symmetric. In other words, the reaction between a tubular
expansion dipole “‘a” and a filamentary testing dipole “b”’ can dif-
fer from the reaction between the corresponding filamentary testing
dipole @ and tubular expansion dipole b. This asymmetry would oc-
cur, for example, in the case of two noncollinear dipoles of different
lengths.

In Richmond’s implementation of the above formulation, an ap-
proximation is made that can lead to an exactly symmetric mu-
tual impedance matrix. The computation of mutual impedance be-
tween a tubular expansion dipole and a filamentary testing dipole
is composed of four monopole-to-monopole mutual impedances. In
the mutual impedance between an expansion monopole and a test-
ing monopole, the tubular expansion monopole is replaced with an
approximately equivalent filamentary expansion monopole. In a fila-
mentary monopole-to-monopole mutual impedance computation, the
two monopoles are placed on their respective segment axes unless the
axes intersect or coincide. If the axes coincide, the monopoles are
offset from each other by a wire radius in a direction orthogonal to the
coincident axes. In this coincident-axis case, the equivalence between
the tubular and filamentary expansion monopoles is exact because of
symmetry. If the two segment axes intersect, the monopoles are off-
set from each other by a wire radius in a direction orthogonal to the
plane containing both axes.

Fig. 1 illustrates the arrangement of segment axes in an example
dipole-to-dipole mutual impedance calculation. Circled letters denote
dipoles and boxed numbers denote monopoles. The unenclosed num-
bers denote points on the wire axis that define the span of two dipoles.
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Fig. 2. Monopole locations for the example dipole-to-dipole mutual

impedance problem.

Each dipole contains two monopoles. The mutual impedance between
dipole @ and dipole & is composed of four monopole-to-monopole
mutual impedances as follows:

Zap =Zy3 + 2y +Zn+2y

Zpg =Zsn +Zy2 +Z4y +Z4s.

Of the above pairs of monopoles, those requiring an offset are 2-3 and
2-4. Pairs 1-3 and 1-4 do not require an offset because their segment
axes do not intersect. Fig. 2 shows a possible monopole geometry that
satisfies the offset requirements for both Z,, and Z,,. The mutual
impedance Z,;, is computed with the same current distributions as
Zpa, 50 Zgp and Z,, are reciprocal. Note that monopoles 1 and 2
are offset from one another, causing dipole a to be broken, while
dipole b is continuous. To satisfy the continuity equation, there must
be equal and opposite point charges on monopoles 1 and 2 at the
dipole break. However, in the original program, the contribution
of the point charge electric scalar potential gradient is not included
in the E-field when the following mutual impedance integrals are
evaluated:

Zabif/Eg‘deV (1a)

Z,m:—/Eb-J,,dV (1b)
where E, and E, are the electric fields of dipoles @ and b, J, and
J,, are the volume current densities of dipoles @ and b, unit terminal
current is assumed, and the integrations cover all space. This neglect
of the point charges will affect E,, but not E, (because dipole b has
no point charges). Hence, Z,, will be affected, but not Z,,, and
reciprocity cannot hold.

To restore reciprocity to the above situation where one dipole is
broken, two alternative modifications were implemented. The first
involves partial inclusion of the point charge contribution to (la),
resulting in the point-charge version of the program. The second
involves creating a bridging current in the broken dipole to flow
across the break, resulting in the bridge-current version of the pro-
gram. Although the point-charge version was found to be a good
solution and has been applied successfully to the analysis of log-
periodic antennas [4], the bridge-current version was found to be
clearly superior, and it will be discussed in detail.

As noted earlier in this section, Richmond’s formulation, if im-
plemented exactly, would not yield a precisely symmetric mutual
impedance matrix. However, the approximate implementation, which
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involves only filamentary currents, leads to an exactly symmetric ma-
trix provided that broken dipoles are handled carefully. Because the
approximation is symmetric, the authors prefer to view it as repre-
senting a formulation that is also symmetric. The preferred symmet-
ric formulation is one in which each tubular expansion function has
a corresponding identical tubular testing function.

III. BripGE-CURRENT VERSION

In Section II it was shown that a broken dipole can arise in the
original program. In the bridge-current version, a new current is in-
troduced to bridge any break in a dipole. For example in Fig. 2,
a bridge current would flow from point 2 to 2. For simplicity, the
bridge current is chosen to be a constant across the break. To facili-
tate programming, the mutual impedance integral (1a) is rearranged
into a symmetric form. This is done by first expressing the E-field
in (1a) terms of the electric scalar potential gradient and the mag-
netic vector potential, then integrating the term containing the electric
scalar potential gradient by parts, and finally utilizing the continuity
equation to obtain the following resuit:

Zop = jw // {iJm’)-Jb(r)
47

1 , e MR ,
+ —— pa(tpp ()| ——dVdV' (2a)
4me R

where

R=[r—-r| (2b)
and p, and p, are the volume charge densities of dipoles a and b.
From (2a) it is clear that Z,, and Z,, are equal. It is noted that, for
short separations, the first term is related to inductive coupling and
the second term is related to capacitive coupling.

Consider the application of (2a) to the dipoles shown in Fig. 2,
with an added bridge current bridging the break in dipole a. Because
the bridge current is orthogonal to dipole b, the dot product of the
bridge-current part of J, and J, is zero, and the bridge current
does not contribute to the first term of (2a). Because the distribution
of the bridge current is constant, it has no associated distributed
charge, and continuity of current guarantees no end charges. so the
bridge current does not contribute to the second term of (2a). Hence
the bridge current makes no contribution to (2a), and can thus be
ignored when computing Z,,. Note that the same mutual impedance
Z 4, would be obtained using (1a), although the bridge current would
have to be included in the computation.

Because the bridge current can be ignored when using (2a), the
only change required to the original program is to evaluate the mutual
impedance between monopoles using (2a) instead of (1a), using only
the distributed charge on the monopoles. This requires that changes
be made only to subroutine GGMM.

The specific modifications will now be described utilizing Rich-
mond’s terminology where possible. They are specific to subrou-
tine GGMM. Fig. 3 shows two filamentary monopoles of which
monopole s spans points s; and s,, and monopole ¢ spans points
t, and t;. The current distributions are as follows:

On monopole s,

. sinhy(s —s%)
L) =§ ——M——= 3
®=s sinhy(s; — $x) ®
wherei =lor2, k=2/iand s, <s <s5.
On monopole t,
Lo i sinhy (¢ — t’), @)

sinhy(z; — 1)
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where j = 1 or 2,/ = 2/j and t;, <t <t,. Utilizing (2a), the
mutual impedance between monopoles s and ¢ is

153 5]
Z'sjl :jw/ / |:£ Ii(S)Ij(t)COSll/
ty 5y

1 -
+ Ime qi($)q ()

R

e

dsdt (5)
where R = [s2 + 2 —2stcosy +d?]'/2 and d > 0.

Applying the continuity equation to (3) and (4) gives ¢; and g;.
Substituting the current and charge distributions into (5) yields

15) 52
z :c,.’,/ / [sinhy(s — s¢)sinhy(f — ;) cos ¥
1 S

YR

e
R

+coshy(s —sx)coshy(t —¢))] dsdt

where
cl = Jop
Y 4rmsinhy(s; —s¢)sinhy(t; — ;)"

Expanding the sinh and cosh functions in terms of exponential func-
tions yields

2 2
ij . —yt(msg+nty)
Z,=Ci; 2 E e SO mnl

(62)
p=1 g=1
where
Cij = : e ’ (60
167 sinhy(s; — sx) sinhy(t; — ¢/)
n=+/nle, m=(1D""', n=(17", (6¢)
and

1+ mncosy 2 52 py(ms+ni—R)
Tpa = / dsdi.  (6d)
mn A R

The integral 1 ,, has been evaluated in terms of exponential integrals
as shown in the following:

2 visaln) o=z
[pq — § (*l)h 7e71;.(n+m cos‘{/)/ 7 dz
h=1 v

(Si5h)

W(Sh, 12) PR ) X(Sh,12) e 2
_ ey:;,(m+n cos ) / dz + ev/uo / - dz
wish.) < X(sp, 1) z

. (s, 12) et
+ e‘”““/ —dz M
¥ e

(snat0)
where
v(s, t) =y(—ms + mt cosy + R),
w(s, t) =y(—nt +nscosy +R),
x(s, t) =y(—ms — nt + R + juy),
y(s,8) = y(—ms —nt + R — jug),
and

[1 +mncos¢] 12
u():d P EEEEE—— .
1 —mncosy

Note that each integration variable is a complex constant multiplied
by a real function which is sometimes added to an imaginary constant.
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Fig. 3. Coordinate system used to analyze the mutual impedance between

two monopoles.

The integration path is therefore a straight line on the complex plane.
The function

22 e—Z

wi2(z1, 22) = / —dz ®
k4l z

for straight line path is evaluated in subroutine EXPJ in the original

program.

Limiting cases occur when the monopoles are parallel, causing u
to be zero or infinite. #y becomes zero when 1 + mn cos  is zero.
In this case, it can be shown that /,; = 0. 1o becomes infinite when
1 — mn cos V¥ is zero. In this case, it can be shown that the last two
terms of 7,4 in (7) vanish.

IV. CompaRATIVE RESuULTS OF THE Two PROGRAM VERSIONS

Computations using the original program and the bridge-current
version have been compared with one another for a rectangular wire
loop, a two-wire transmission line, and a log-periodic dipole antenna.
For the rectangular loop and the transmission line, the computations
were also compared with simplified theory. The computations were
done on a microcomputer having an 8088 microprocessor (eight-bit)
with an 8087 math coprocessor, using standard Fortran 77. For com-
plex numbers and functions, single precision (i.e., COMPLEX*8)
was used except where otherwise noted.

A. Rectangular Loop

The two versions were used to compute the input impedance of a
rectangular loop of perfectly conducting wire whose dimensions were
30 by 7.5 mm. The wire had a radius of 1.25 mm and had infinite
conductivity. The frequency was 100 MHz. Note that the wire on the
short side has a length-to-radius ratio of only six, whereas a ratio of
ten or more is often preferred to avoid numerical errors in thin-wire
computations. Because this loop is electrically small, i.e., only 0.025
A in perimeter, the input reactance can be computed approximately
using an inductance formula. Such a formula is given by the U.S.
National Bureau of Standards [5], as follows:

2,1
L= 10 +mZ2 g, +4,)
™ a

—lLIn{y +14) +20qg +a -1, —1y) 9

where the formula has been converted for units of m, H, and natural
logarithms; /,, /,, and /4 are the length, width and diagonal dimen-
sions of the rectangle, and & is the wire radius. Using this formula,
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Fig. 4. Impedance of a perfectly conducting rectangular wire loop computed by the original Richmond program (R) and the bridge current
version (RBC) of the program. All computations used double-precision complex numbers and functions. Dots denote segment end points, and
arrows denote voltage generators. Voltage generators are located at the segment end at which the arrow points. The impedance obtained from

simplified theory is 19.52 x 107¢ + j14.94 Q.
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Fig. 5. Resonant quarter-wave stub. (a) Dimensions and feed details. (b)
Equivalent transmission-line circuit. (c) Equivalent lumped-element circuit.

the loop inductance is 0.02377 pH, which has a reactance of 14.94
Q at 100 MHz.

The radiation resistance was computed by means of numerical in-
tegration of the radiated power flowing through a spherical surface
in the far-field region. A resistance of 19.52 p) was obtained.

Fig. 4 shows various segmentations and corresponding impedances
computed with the original program (R) and the bridge-current ver-
sion (RBC). For complex numbers and functions, double precision
was required in order to obtain accurate resistances. It can be seen
that the bridge-current version is very stable, consistently yielding
a resistance in the range of 19.36 to 19.39 {2, and yielding a re-
actance of 14.95 or 14.96 Q. These results are very close to the
impedance of 19.52 x 107° + j14.94  obtained from the simpli-
fied theory. Comparing Figs. 4(b) and 4(c), one sees that the original
program predicts reactances that change from 15.09 to 36.55 (2 and
resistances that change from 19.84 to 23.77 u (), solely because the
point numbering scheme was changed.

B. Resonant Quarter-Wave Stub

The input reactance was computed, using transmission line theory
and the moment method, for the two-wire transmission line stub
shown in Fig. 5(a). The line has a width of 7.5 mm and a length of
750 mm which is 0.25017 X at the test frequency of 100 MHz. The
transmission line is short circuited at one end, and open circuited
at the other. The radius of the wire for both the transmission line
and the short circuit is 1.25 mm, and the conductivity is infinite. As
with the rectangular loop example, the short-circuiting wire has a
length-to-radius ratio of only six.

Fig. 5(b) shows the equivalent transmission line circuit. The char-
acteristic impedance Z, of the transmission line is 211.53 Q. The
self inductance L of the short-circuiting wire is approximately the
same as the mutual inductance of two parallel filamentary currents
spaced a wire radius apart. It was computed to be 2.4669 x 10~°
H, which yields a reactance of 1.55 € at 100 MHz. The resulting
transmission line theory input reactance as defined in Fig. 5(c) is
3.57 Q.

Fig. 6 shows the moment method predicted reactances for various
segmentations. Note that in the first segmentation, the length ratio
of adjacent segments at the corner junction is 50:1. A large length
ratio such as this could conceivably lead to inaccurate results, but
no problem with the RBC version arises in this computation or in
other comparable ones. The original program (R) is seen to predict
reactances that vary with the numbering scheme of the segment end
points, introducing errors that vary with segmentation, the worst case
being Fig. 6(f) with an order-of-magnitude error. However, for any
segmentation, there is one numbering scheme that produces predicted
reactances that agree well with transmission line theory. The bridge-
current (RBC) version is insensitive to the point numbering scheme
and the segmentation, yielding reactances between 3.55 and 3.65
2, which is in good agreement with the transmission-line-theory
computation.

C. Log-Periodic Dipole Antenna

A log-periodic dipole antenna (LDPA) analysis has been done by
Vainberg and Balmain [2] using Richmond’s original program. They
computed asymmetry resonances produced on LPDAs in which the
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Fig. 6. Reactance of quarter-wave stub at 100 MHz computed by R and RBC moment methods. Dots denote segment end points. The stub
dimensions and feed details are shown in Fig. 5(a), where / = 375 mm, b = 7.5 mm, and @ = 1.25 mm. The wire is assumed to be perfectly
conducting. The reactance obtained from transmission-line theory is 3.57 €.

symmetry was destroyed by an extension of one of the monopoles
on the antennas. One surprising result was that, in the case of a
perfectly symmetric antenna, the program still predicted asymme-
try resonances, four of them in the case studied. For a symmetric
antenna, the currents on the two feeder wires should be equal and
opposite everywhere. Hence, to either side of the antenna, the far
E-field polarized parallel to the feeder wires should be zero. A mea-
sure of the ‘““computer generated asymmetry,” therefore, is the side
radiation, relative to the radiation on the antenna boresight. Vainberg
and Balmain found that, with the original program, the side radia-
tion exhibited peaks at four frequencies with maxima 50 dB below
the boresight radiation, a level much too high to be attributed to
computer round-off errors. They noted that a different segmentation
using only one segment per monopole instead of two segments pro-
duced side radiation of 110 dB below the boresight radiation. In the
present work, the above analysis using two segments per monopole
was repeated using the bridge-current version. The predicted side
radiation versus frequency was plotted, and four rather ill-defined
peaks were identified, the highest levels of these peaks being at least
110 dB below the boresight radiation.

V. CoNcLUSION

A modified version of Richmond’s original thin-wire program has
been presented, namely the bridge-current version. This version has
been shown to be insensitive to both the model segmentation scheme
and the point numbering scheme, in contrast to the original program
which could generate impedance values in error by as much as an
order of magnitude. The bridge current version is also in good agree-
ment with magnetostatic theory for the small rectangular wire loop,

and with transmission line theory for the two-wire quarter-wave stub.
Both the rectangular loop and the stub are relevant to the analysis of
complicated wire antennas such as the log-periodic dipole antenna
which involve close-spaced parallel wires in both the feeder struc-
ture and the radiating elements. The bridge-current version applied
to log-periodic antennas suppresses non-physical asymmetric side ra-
diation from symmetric structures to the point where true asymmetry
resonances caused by perturbations in antenna geometry can be an-
alyzed with confidence. Therefore, it is expected that this version
of the program should be particularly useful in the analysis of other
antennas that incorporate either parallel feed wires or parallel-wire
stubs.
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