
 
 

 Maxwell’s Equations in Differential Form 
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 Electric field intensity [V/m] 

 
≡B


 Magnetic flux density [Weber/m2 = V s/m2 = Tesla] 

 
≡iM


 Impressed (source) magnetic current density [V/m2] 

 
≡dM


 Magnetic displacement current density [V/m2] 

 
≡H


 Magnetic field intensity [A/m] 

 
≡iJ


 Impressed (source) electric current density [A/m2] 

 
≡D


 Electric flux density or electric displacement [C/m2] 

 
≡cJ


 Electric conduction current density [A/m2] 

 
≡dJ


 Electric displacement current density [A/m2] 

 
≡evρ  Electric charge volume density [C/m3] 

 
≡mvρ  Magnetic charge volume density [Weber/m3] 



 
 

Remarks: 
 

1. Impressed magnetic current density ( iM


) and magnetic charge density ( mvρ ) are 
unphysical quantities introduced through “generalized” current to balance 
Maxwell’s equations. 

2. Although unphysical, iM


, mvρ  similar to iJ


and evρ can be considered as energy 
sources that generate the fields. 

 
 
 
3. Through “equivalent principle” iM


and mvρ can be used to simplify the solutions 

to some boundary value problems. 

4. 
t
BM d ∂
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=



(magnetic displacement current density [V/m2]) is introduced 

analogous to 
t
DJ d ∂
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(electric displacement current density [A/m2]) 
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 generates the electric  
displacement current 

 



 
 

Integral form of Maxwell’s Equations 
 

Elementary vector calculus: 
 

Stokes’ Theorem: ( ) ∫∫∫ ⋅=⋅×∇
CS

ldAsdA


 

• It says that if you want to know what is happening in the interior of a surface bounded 
by a curve just go around the curve and add up the field contributions. 
 

Divergence Theorem: ( ) ∫∫∫∫∫ ⋅=⋅∇
SV

sdAdVA 
 

• In simple words, divergence theorem states that if you want to know what is happening 
within a volume of V  just go around the surface S (bounding volume V ) and add up the 
field contributions. 
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• The Divergence and Stokes’ theorems can be used to obtain the integral forms of the 
Maxwell’s Equations from their differential form. 
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Helmholtz Theorem 
 

• Traditionally, Newtonian mechanic is formulated in terms of force ( F


) and torque (τ ), 

,
dt
PdF



=  

dt
Ld



=τ  where L


 is the angular momentum. 

However such an approach to classical electromagnetism will be unnecessarily 
cumbersome. Instead, the description of electromagnetics starts with Maxwell’s 
equations which are written in terms of curls and divergences. The question is then 
whether or not such a description (in terms of curls and divergences) is sufficient and 
unique? The answer to this question is provided by Helmholtz Theorem 
 
• A vector field is determined to within an additive constant if both its divergence and its 
curl are specified everywhere. 
 
• Equivalent statement: A vector field is uniquely specified by giving its divergence and 
its curl within a region and its normal component over the boundary, that is if: 
S and C


are known and given by  
SM =⋅∇


,  

CM


=×∇  
and nM


(the normal component of M


on the boundary) is also known; then M


is 

uniquely defined. 
 
Remark: Helmholtz’s theorem allows us to appreciate the importance of the Maxwell’s 
equations in which E


and H


are defined by their divergence and curl. 
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Irrotational & Solenoidal Fields (Use of Helmholtz 
Theorem) 

 
Definition: 
• A field is irrotational if its curl is zero 

ii FF ≡=×∇ 0


is irrotational 
• A field is solenoidal (divergenceless) if its divergence is zero 

ss FF


≡=⋅∇ 0 is solenoidal 
 
Theorem: 
• A vector field which its divergence and curl vanishes at infinity can be written as the 
sum of an irrotational & a solenoidal fields. 
 
• According to the theorem stated above, the vector field M


can be written as 
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• Since iF


is irrotational then VFF ii −∇=⇒=×∇


0 whereV  is a scalar function. 

• Since sF


is solenoidal then AFF ss


×∇=⇒=⋅∇ 0  then (1) AVM
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Constitutive Relations 
 

ED


ε=  

0

0

µµµ
εεε

µ

r

r

HB

=
=
=



 

 
≡ε permittivity [F/m] 
≡oε vacuum permittivity = 8.85 ×10-12

 [F/m] 
≡rε Relative permittivity or dielectric constant [#] 
≡µ permeability [H/m] 
≡0µ free space permeability = 4π × 10-7 [H/m] 
≡rµ relative permeability [#] 

 
• We also write 

mr χµ += 1    (1)  

er χε += 1    (2)  
Where mχ  and eχ  are the magnetic and electric susceptibility, respectively. mχ , eχ  are 
dimensionless. 
 
• Index of refraction is defined as 

rrn µε=    (3)  
≡n  index of refraction or phase index [#] 

 
• If we are mostly concerned with non-magnetic materials then 

rr n εµµµ =⇒=⇒≈ 01  
 

Polarization and Magnetization 
 
• Polarization vector P


 and magnetization vector M


 are related to D


and E


 and B


and

H


 according to: 
 



 
 

( )MHMHB
EPD





+=+=

+=

000

0

    )5(
    (4)

µµµ

ε
 

 
• Assuming EP e


χε 0= , then: 

( )
ED

EEEEPED ree




ε

εεχεχεεε

=

⇒=+=+=+= 00000 1  

 
• Assuming HM m


χ= then 

( )
HB

HHMHB rom




µ

µµχµµµ

=

⇒=+=+= 1000  

 
• ε and µ describe the macroscopic response of the media.ε characterizes the electric 
response while µ describes the magnetic response. In the following we assume our 
medium is nonmagnetic. 
 

Homogeneous vs. Inhomogeneous, Isotropic vs. 
Anisotropic, Linear vs. Non-Linear 
 
• Ifε depends on position, i.e. ( )rε , media is non-homogeneous. 
• Ifε depends on the direction of the applied field, i.e., D


and E


are not co-linear, then the 

medium is said to be anisotropic. Examples of anisotropic materials are Calcite (uniaxial) 
or topaz (biaxial). 
• In the case of anisotropic mediumε  is a tensor (for our purposes a matrix of rank 2). 
We then write: 

ED
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• Ifε depends on the magnitude of the applied field, i.e. ( )E


ε , we say medium is 
nonlinear. Note that in this case even though permittivity is a function of the filed 
strength, it can still be a scalar function. 
 
• An example of non-linear medium is when 
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Whereb is the maximum field strength. 
 



 
 

• Interesting thing about (3) is the fact that it describes the response of the vacuum, 
(proposed by Born & Infeld) in order to address the problem of vacuum infinite self-
energy. 
 

Infinite Self Energy 
• A charge particle can be thought as the localization of the charge density. As a charge 
distribution localizes to a point charge, its electromagnetic energy grows more and more 
and becomes unbounded1
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. To avoid this infinite self-energy we can think that some 
saturation of field strength takes place, i.e., field strength has an upper bound. This 

classical non-linear effect is given by  

• However, there are few problems with Born & Infeld classical non-linear vacuum 
response. (1) The theory suffers from arbitrariness in the manner in which the 
nonlinearities occur. (2) There are problems with transitions to the quantum domain. (3) 
So far, there has been no experimental evidence of the existence of this kind of classical 
nonlinearities.  
• As to the last point, we may note that in the orbits of electrons in atoms, field strengths 
of 1011-1017 V/m are present.  For heavier atoms, these fields can be even as large as 
1021 V/m at the edge of the nucleus; yet ordinary quantum theory with linear 
superposition is sufficient to describe the observed phenomena with a high degree of 
accuracy. 

HW: Consider a hydrogen atom unexcited and in thermal equilibrium. Calculate the 
magnitude of the electric field due to its nucleus at the site of its electron. 

Temporal dispersion 
 
• Ifε depends on frequency, i.e. ( )ωε , we say the medium is dispersive (frequency 
dispersion) 
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• Note that from (1) we can write 
εεε ′′−′= j    )2(  

 
• Remarks: Temporal dispersion means that the parameters describing the medium 
response (e.g. ε  and µ ) are functions of time derivatives.  Spatial dispersion means that 
the parameters describing the medium response (e.g. ε  and µ ) are functions of space 
derivatives. 
• If a medium is linear, homogeneous, and isotropic, we say the medium is simple. 
 

                                                 
1 Recall that the potential energy (U) corresponding to two charges q1 and q2 separated by a distance r is 
given by:  U = q1 q2 /4 π ε0 r 
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Electric Field 
• Electric field due to a point charge in origin 
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• Electric filed due to a point charge not at the origin 
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• Superposition principle 
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Differential 
surface charge 
density sρ′  

A (Observation point) 

Electric Field & Potential due to Continuous Charge 
Distribution 
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• Surface charge density, ( ) ( )zyxr ss ′′′′=′′ ,,ρρ   
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Remark: If you have forgotten the differential length, surface, and volume elements for 
rectangular, cylindrical, or spherical, you may want to revisit these. See also the end of 
this note set. 

Electric Field of a Dipole 
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Recall pdq 
=  is the dipole moment, then 
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• For our coordinate system zapp ˆ=
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• r is the position vector in spherical coordinate, then let us express E


in the spherical 
coordinate 
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HW: Show that potential at point A for an electric dipole is given by 
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Electric Polarization P
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p [C·m] Electric dipole moment 
P


[C/m2] Electric polarization vector 
N [#/m3] is the number of dipoles per unit volume  
 
• P


[C/m2] is the volume density of electric dipole moment p [C·m] 
Note P


and D


have the same units [C/m2]: PED


+= 0ε  

 
• Polarization vector P


 may come to exist due to (a) induced dipole moment, (b) 

alignment of the permanent dipole moments, or (c) migration of ionic charges. 
 

• In differential form: 
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Potential due to Bound (Polarized) Surface & Volume 
Charge Densities 
 
A dielectric of volume v′ is polarized. We want to calculate the potential V [Volt] set up 
by this polarized dielectric. 
 

 
• Potential due to a single dipole 
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Total potential V is found by integrating the above: 
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The potential then can be written as 
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Where na′ˆ is perpendicular to surface S ′  bounding volume v′ . 
 
Compare above to the previously obtained expressions for V due to surface and volume 
charge densities, i.e.: 
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Or in general, dropping the prim notation since we know that integration is carried with 
respect to the prim coordinate, we define 



 
 

• Bound or polarized surface charge density: nsP aP ˆ⋅=


ρ  [C/m2] 

• Bound or polarized volume charge PvP


⋅−∇=ρ  [C/m3] 

 
• A polarized dielectric can be replaced by a bound (polarized) surface and volume 
charge densities ( sPρ & vPρ ).  The potential setup by these bound charges then can be 
calculated. 
 
Remarks: Few useful identities 
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Generalized Gauss’ Law & Constitutive Relation ED
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• In free space 
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• When a medium is polarized we must take into account the effects of the bound 
charges, hence 
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 ← Generalized Gauss’ Law 
 
• Also note that for PED
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Where er χε += 1 then 
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Magnetization & Permeability 
 
• Magnetic materials exhibit magnetic polarization ( M


, magnetization) when subjected 

to an applied magnetic field 
 
• This magnetization is the result of alignment of the magnetic dipoles of material with 
the applied magnetic field. This is similar to electric polarization which is the result of 
alignment of electric dipoles of the material with the applied electric field. 
 

Magnetic Dipole & Magnetic Dipole Moment 
 
• To accurately describe magnetic behavior of materials quantum theory of matter is 
needed. However, accurate qualitative and quantitative description can be found using 
simple atomic model (semi-classical) 
 
• The electron orbiting the nuclei can be thought of as a small current loop of area ids
with current iI  
• As long as loop is small, its shape can be circular, square, or any other closed curve 

 
 
• The magnetic dipole moment is given by 

iiii dsInmd ˆ= [A·m2], 
where in̂ is perpendicular to the loop surface. 
 
• The magnetic field of the current carrying loop at large distance is similar to the field of 
a linear bar magnet, i.e., a magnetic dipole. 
 
• For a material of volume v∆  which contains mN magnetic dipoles (orbiting electrons) 
per unit volume, the total magnetic moment is given by  
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• The magnetic polarization, i.e. magnetization ( M


) is given by 
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• Note that magnetization ( M


) is the volume density of the total magnetic dipole moment 

( tm ), and also the fact that magnetization ( M


) has the same units as the magnetic field 
intensity, H


 [A/m]. 

 
• In absence of an applied field ( 0=aB


) the magnetic dipoles point in random directions. 

However, when 0≠aB


, the dipoles will experience a torque given by 

iaiiaiaiiaiaiai BdsIBnBdsIBmdBmdBmd Ψ=∠=∠=×=∆ sin),ˆsin(),sin(
τ  

 
• Subjected to the above torque, the magnetic dipoles realign themselves such that their 
moment ( imd  ) is collinear with aB


 (see figure in the next page) 

00 →∆⇒→Ψ τi  
 
Remark: Comparing the similarities between the torque & potential energy for electric & 
magnetic dipoles 
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Epd
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⋅−=∆

⋅−=∆

 
 

 
 
• From next page figure we see that in absence of an applied magnetic field, we can write 

aHB


0    )1( µ= . 
But, when a magnetic material is present, a magnetic polarization ( M


) is also present 

and an additional term must be added to (1). In order to take into account the influence of 
the material, we write 

( )MHMHB aa


+=+= 000    )2( µµµ  

 
• However, M


is ultimately related to the applied field aH


. If we assume 

am HM


χ=    )3( , 
Where mχ is a scalar (or tensor) function then we have 

[ ] aaram HHHB


µµµχµ ==+= 00 1    )4( , 
Where mr χµ += 1 is the relative permeability and µ is the permeability. 



 
 

  
  



 
 

Bound Magnetization Current Density 
• Recall that for an electric field applied to a medium we had 

nsP aP ˆ⋅=


ρ  

PvP


⋅−∇=ρ , where P


 is the electric polarization, vPρ  and sPρ  are the volume and 

surface bound charges, and nâ  is the normal to the surface. 
 
• Similarly, for magnetic field applied to a medium we have 

nsm aMJ ˆ×=


 
MJvm


×∇=  

• Here, smJ


 is the bound magnetization surface current density [A/m], vmJ


 is the bound 
magnetization volume current density [A/m2], and nâ  is the normal to the surface.  
 
Remark:  
The origin of magnetization ( M


) can also be visualized by the following:  

• When 0≠aB


, the magnetic moments line up with aB


to minimize the potential energy as 
shown in the figure. 
 
• Since the number of dipoles is very large and therefore they are closely packed, in the 
limit, the currents of the loops within the interior part of the medium will cancel each 
other and only a surface current ( smJ


) on the exterior of the slab remains. 

 
• This bound magnetization surface current density ( smJ


) is responsible for producing the 

magnetization ( M


). 
 
• So far we have only considered the magnetic moment of the orbiting electron; however, 
a magnetic moment can also be assigned to the spin of electron. 
 
• Only electrons in the atomic shell that are not completely filled will contribute to the 
spin magnetic moment. 
 
• In general the magnitude of the spin magnetic moment is 24109 −×±≈ [A·m2]. 
 
• There is also a magnetic moment associated with the nucleus   . 
 

DC Conductivity 
• Consider a small cylinder containing N electrons per unit volume, where electrons are 
moving with velocity v . 
 

≡N Number of electrons per unit volume [1/m3] 
≡v Velocity vector of electrons 



 
 

≡e Electron charge 
≡n̂ Normal to the surface 
≡∆V Volume of the cylinder 

 
• The total chare ( Q∆ ) contained within the volume ( V∆ ) is given by  

VeNQ ∆=∆ , where tvnSV ∆⋅∆=∆ ˆ  
hence 

tvnSeNQ ∆⋅∆=∆ ˆ .  This implies 
 

 
• We define JveN

 = , where J


is the current density vector [A/m2] and ItQ ∆=∆∆ ; 
then we have SnJI ∆⋅=∆ ˆ


 

 
Remark:  
• SnJI ∆⋅=∆ ˆ


 can be written as dsnJdI ˆ⋅=


in differential form, 

which implies 

∫∫ ⋅=⇒ dsnJI ˆ


 ← This is our standard equation for 
calculating current from current density. 
 
• Let us assume a linear relationship between velocity ( v ) and electric filed ( E


), i.e., 

Ev
 µ−= , where µ  is called mobility [m2/V·s] (note E


and v are anti-parallel) 

 
• Then EeNveNJ


µ−== , for electron 1910602.1 −×−=−= qe  [C] 

ENqJ


µ=⇒  
• Compare the above to ⇒= EJ s


σ µσ Nqs = .  This says that static conductivity is the 

product of electron charge, electron density, and electron mobility.  
 
• In our analysis so far we have only considered the electrons, however when positive 
charges (ions of holes) are present we must consider the contributions of both carriers to 
the conductivity. The static conductivity is then modified according to: 

hhees NqNq µµσ +=  
≡eµ Electron mobility 
≡hµ Hole mobility 

eN and hN  are electron and holes densities [1/m3] 
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Time Harmonic or Sinusoidal Steady State 
Electromagnetic Fields 
• Assuming time harmonic fields, the instantaneous field ( )tzyxE ,,,


 and the complex 

spatial field ( )zyxE ,,


 are related by 
( ) ( )[ ]
( ) ( )[ ]
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ezyxEtzyxE
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,,Re,,,
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Conductivity (DC & AC) 
• The Amper’s law given by dcisi JJJ

t
DEJtzyxH





++=

∂
∂

++=×∇ σ),,,(  can be 

written as  
),,(),,(),,( zyxEjzyxEJJJJzyxH siDCi


ωεσ ++=++=×∇  

 
• Whereε in general is complex: εεε ′′−′= j  and sσ is the static (DC) conductivity (this 
is due to free carriers; i.e., electrons at 0=ω ). 
 
• The Ampere law then can be written as: 

( ) ( ) EjEJEjEJEjjEJH eisisi


εωσεωεωσεεωσ ′++=′+′′++=′′−′++=×∇  

where we have defined the followings: 
asse σσεωσσ +=′′+= ; where eσ is the equivalent (effective) conductivity [1/Ω·m] 

≡′′= εωσ a Alternating (AC) conductivity [1/Ω·m] 





+
=

tors)semiconduc(for  
)conductors(for  

qNqN
qN

hhee

ee
s µµ

µ
σ = static (DC) conductivity [1/Ω·m] 

 
• Note sσ is due to free charges at 0=ω (a signature of true conductors). 
• aσ is due to “resistance” of the dipoles as they attempt to align (rotate) themselves with 
the applied field. 
 
• The phenomenon of dipole rotation, which contributes to aσ  is sometimes called 
dielectric hysteresis. 
 
• For good dielectrics such as glass or plastic 0≈sσ , but these materials when exposed to 
alternating fields ( 0≠aσ ) can dissipate large amount of energy. Example of large aσ and 
its application are: 
- microwave cooking 
- selective heating of human tissue 
- removing sulfur from mineral coal to produce clean coal (selective heating) 
 



 
 

• Note deceiei JJJEjEJH


++=′++=×∇ εωσ  
≡iJ


Impressed current density 

( ) ( ) EEEJ sasece


εωσσσσ ′′+=+=≡ : Effective conduction current density 

EjJde


εω ′≡ : Effective displacement current density 

 

Loss Tangent 
 
• Note that Amper’s law given by EjEJH ei


εωσ ′++=×∇  can be rewritten as: 

( ) EjjJEjjJH ei
e
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≡eδtan Effective electric loss tangent 
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with 

εω
σ

δ
′

= s
stan : Static (DC) loss tangent 

ε
εδ
′
′′

=atan : Alternating (AC) loss tangent 

• Manufacturer usually provides loss tangent or the conductivity. 
 
• Note that in the above discussion we have expressed the conduction (DC) and dielectric 
losses (AC) in terms of effective conductivity ( eσ ) or effective loss tangent ( eδtan ). We 
could have also formulated the problem in terms of complex permittivity.  
 

• To see this we write: EjJEjjJH ci
e

i


ωε

εω
σεω +=








′
−′+=×∇ 1 , where 
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′
−′= sase

c jjj  

• In the expression for cε  the free carrier losses and dielectric losses are clearly evident. 
 
• Remark: The presence of static conductivity as a separate mechanism of loss in addition 
to the dielectric loss (ε ′′ ) can also be observed in the Kramers-Kronig relations which 
connects the real and imaginary parts of the dielectric constant. When a medium has 
static conductivity sσ  then Kramers-Kronig relations are given by 
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where P stands for the principle value integral. 
 
 
 

Boundary Conditions 
• Maxwell’s equations in differential forms are point equations; i.e. they are valid when 
fields are: single valued, bounded, continuous, and have continuous derivatives. 
 
• When boundaries are present, fields are discontinuous; hence to find the fields we must 
rely on their integral form. 
 
• Boundary conditions for tangential H


: 

Assume finite conductivity ( )∞≠21 ,σσ  and no sources on boundary ( )0,0 == ii JM
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∂
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000 SSC

sdD
t

sdEldH 
σ  (1) 

• Taking the limit of the both sides of Eq. (1), the Left hand side (LHS) can be written as:  
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• The first term on the right hand side (RHS) 
of Eq. (1) can be written as: 
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• The second term on the RHS of Eq. (1) can be written as: 
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• Putting it all together: 

( ) ( ) 0ˆ0ˆ 1221 =−⋅⇒=∆−⋅ HHaxHHa xx


. 

 
• Note that: 

≡⋅ 2ˆ Hax Tangential component of 2H


WRT the interface, 



 
 

≡⋅ 1ˆ Hax


Tangential component of 1H


 WRT the interface. 

 
• Also the fact that we can carry the same analysis in the y-z plane which results in  

( ) 0ˆ 12 =−⋅ HHaz


, with 2ˆ Haz ⋅  and 1ˆ Haz ⋅  designating the tangential components of the 

H


 fields.  The conclusion is then the following: tangential components of H


 are 
continuous across the boundary between two dielectrics.  This all can be summarized as  

( ) 0ˆ 12 =−× HHn


 

Boundary Condition on Normal Components (Not 
corrected) 
Medium (1) and (2) are non conductors (dielectrics) ( ∞≠21 ,σσ ) and there are no 
sources at the boundary 0== mses ρρ  
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Summary of boundary conditions 
 
General Case: 
• ( ) sMEEn


−=−× 12ˆ  

sM : Fictitious magnetic current density [V/m] 
 
• ( ) sJHHn


=−× 12ˆ  

sJ


: Electric surface current density [A/m] 
 
• ( ) esDDn ρ=−⋅ 12ˆ


 

esρ : Electric surface charge density [C/m2] 
 
• ( ) msBBn ρ=−⋅ 12ˆ


 

msρ : Fictitious magnetic surface charge density [Weber/m2] 
 
 
Boundary Conditions Between to Perfect Dielectrics: 

( ) 0ˆ 12 =−× EEn


, 
( ) 0ˆ 12 =−× HHn


, 

( ) 0ˆ 12 =−⋅ DDn


,  
( ) 0ˆ 12 =−⋅ BBn


 

 
Boundary Conditions for Two Media in which One Medium Is a Perfect Conductor 
( ∞=1σ ), With no Sources Present ( 0=sM


, 0=msρ ): 

• In medium-1, since perfect conductor 011 ==⇒ DE


 then 111 0 B
t

B
t

E


∂
∂

=⇒
∂
∂

−=×∇

. But this means that 1B


 must be a constant function of time which contradicts the 
assumption of time varying electric and magnetic fields; i.e. the electrodynamics 
assumption.  Therefore, 011 == HB


 

 
• ( ) 0ˆˆ 212 =×⇒−=−× EnMEEn s


 

Electric filed has no tangential component on the boundary between perfect conductor 
and dielectric. 
 
• ( ) ss JHnJHHn


=×⇒=−× 212 ˆˆ  

Tangential component of H


is discontinuous by amount of surface current sJ


 at the 
boundary between perfect conductor and dielectric. 
 
• sJ is the surface current due to the free charges on the metal (not the bound charges) 



 
 

 
• ( ) eses DnDDn ρρ =⋅⇒=−⋅ 212 ˆˆ


 

Electric field has only normal component on the boundary between perfect conductor and 
dielectric. 
 
• ( ) 0ˆˆ 212 =⋅⇒=−⋅ BnBBn ms


ρ  

Magnetic field has no normal component 
on the boundary between perfect conductor 
and dielectric.  
 
 
Boundary Conditions Between Two 
Medium one of which Is a Perfect 
Magnetic Material (the medium has 
infinite magnetic conductivity, i.e. 

01 =tH


) and no sources are present (
0=esρ , 0=sJ


) 

 
• Here 00 11 =⇒= BH


, 011 == DE


 

 
• ( ) ss MEnMEEn


−=×⇒−=−× 212 ˆˆ  

Electric filed is tangential to the boundary 
 
• ( ) 0ˆˆ 212 =×⇒=−× HnJHHn s


 

Magnetic filed has no tangential component on the boundary 
 
• ( ) 0ˆˆ 212 =⋅⇒=−⋅ DnDDn es


ρ  

Electric filed has no normal component at the boundary 
 
• ( ) msms BnBBn ρρ =⋅⇒=−⋅ 212 ˆˆ


 

Magnetic field is normal to the boundary 
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E


 E


 



 
 

Differential length elements 
 
Rectangular Coordinate System:  
 
Cylindrical Coordinate System:  
 
Spherical Coordinate System:   
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