Maxwell’s Equations in Differential Form
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E = Electric field intensity [V/m]
B=  Magnetic flux density [Weber/m? = V s/m? = Tesla]

M. = Impressed (source) magnetic current density [V/m?]

M, = Magnetic displacement current density [V/m?]

H = Magnetic field intensity [A/m]

J = Impressed (source) electric current density [A/m?]
D= Electric flux density or electric displacement [C/m?]
J,= Electric conduction current density [A/m?]

J, = Electric displacement current density [A/m?]

p., = Electric charge volume density [C/m°]

p., = Magnetic charge volume density [Weber/m®]



Remarks:

1. Impressed magnetic current density (M) and magnetic charge density (o, ) are
unphysical quantities introduced through “generalized” current to balance
Maxwell’s equations.

2. Although unphysical, M., p,, similarto J.and p,,can be considered as energy

sources that generate the fields.
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J. generates the electric
displacement current
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Current source

3. Through “equivalent principle” M, and p, can be used to simplify the solutions
to some boundary value problems.

§= % (magnetic displacement current density [V/m?]) is introduced

analogous to J, = %D(electric displacement current density [A/m?])




Integral form of Maxwell’s Equations

Elementary vector calculus:

Stokes Theorem: [[(Vx A)-ds = f A-dl
S C

* It says that if you want to know what is happening in the interior of a surface bounded
by a curve just go around the curve and add up the field contributions.

volume V

GRRRN SN surface S

Divergence Theorem: ”I(V . A) dv = ﬁ,&. ds BRI
v s

* In simple words, divergence theorem states that if you want to know what is happening
within a volume of V just go around the surface S (bounding volume V ) and add up the
field contributions.

Null Identities:
V-(VxA)=0<V-B=0<B=VxA
Vx(Vg)=0=VXE=0=E=-V¢

(electrostatic)

* The Divergence and Stokes’ theorems can be used to obtain the integral forms of the
Maxwell’s Equations from their differential form.
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Helmholtz Theorem

« Traditionally, Newtonian mechanic is formulated in terms of force ( F ) and torque (7),
F = (jj—I: T = ?j—: where L is the angular momentum.

However such an approach to classical electromagnetism will be unnecessarily
cumbersome. Instead, the description of electromagnetics starts with Maxwell’s
equations which are written in terms of curls and divergences. The question is then
whether or not such a description (in terms of curls and divergences) is sufficient and
unique? The answer to this question is provided by Helmholtz Theorem

* A vector field is determined to within an additive constant if both its divergence and its
curl are specified everywhere.

* Equivalent statement: A vector field is uniquely specified by giving its divergence and
its curl within a region and its normal component over the boundary, that is if:

Sand C are known and given by

V-M =S,

VxM =C

and M (the normal component of M on the boundary) is also known; then M is
uniquely defined.

Remark: Helmholtz’s theorem allows us to appreciate the importance of the Maxwell’s
equations in which E and H are defined by their divergence and curl.

Pev.

Ex.: VxE:—géand V-E=
ot &

Irrotational & Solenoidal Fields (Use of Helmholtz
Theorem)

Definition:

* A field is irrotational if its curl is zero

V x F, = 0= Fis irrotational

* A field is solenoidal (divergenceless) if its divergence is zero
V-F, =0=F,is solenoidal

Theorem:
* A vector field which its divergence and curl vanishes at infinity can be written as the
sum of an irrotational & a solenoidal fields.

« According to the theorem stated above, the vector field M can be written as



1) M=F+E

« Since F is irrotational then VxF, =0= F, =-VV whereV is a scalar function.
« Since F,is solenoidal then V-F, =0= F, =V x A then (1) = M =-VV +Vx A

Constitutive Relations

& =permittivity [F/m]

£, =Vvacuum permittivity = 8.85 x10™* [F/m]

¢, = Relative permittivity or dielectric constant [#]
u = permeability [H/m]

U, = free space permeability = 4z X 107" [H/m]

u, =relative permeability [#]

» We also write

D) u =147,

2 & =1+7.

Where y,, and y, are the magnetic and electric susceptibility, respectively. y., x. are
dimensionless.

« Index of refraction is defined as

) n=y& u

n = index of refraction or phase index [#]

* If we are mostly concerned with non-magnetic materials then
porl= = =>n=le
Polarization and Magnetization

« Polarization vector P and magnetization vector M are related to Dand E and B and
H according to:
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« Assuming P = ¢,y E , then:
D=¢,E+P=¢,E+g,7.E :go(1+;(e)I§ =g,5 E—
D=¢E

* Assuming M = y_H then
= poH + 1M = g1y (L+ 7 )H = g1, H =
uH

w o
I

» g¢and u describe the macroscopic response of the media. ¢ characterizes the electric
response while . describes the magnetic response. In the following we assume our
medium is nonmagnetic.

Homogeneous vs. Inhomogeneous, Isotropic vs.
Anisotropic, Linear vs. Non-Linear

* If ¢ depends on position, i.e. g(r), media is non-homogeneous.

« If & depends on the direction of the applied field, i.e., D and E are not co-linear, then the
medium is said to be anisotropic. Examples of anisotropic materials are Calcite (uniaxial)
or topaz (biaxial).

* In the case of anisotropic medium ¢ is a tensor (for our purposes a matrix of rank 2).
We then write:

(1) D =e¢E where

DX gXX 6‘)(y gXZ EX
(@) |D,|=5lex €y &, ||E,
DZ gZX gZy EZZ EZ

* If £ depends on the magnitude of the applied field, i.e. g(]E‘), we say medium is

nonlinear. Note that in this case even though permittivity is a function of the filed
strength, it can still be a scalar function.

» An example of non-linear medium is when

(3) 83 - {1+ b—lz(csz - Ez)] ,

0
Whereb is the maximum field strength.



* Interesting thing about (3) is the fact that it describes the response of the vacuum,
(proposed by Born & Infeld) in order to address the problem of vacuum infinite self-
energy.

Infinite Self Energy

* A charge particle can be thought as the localization of the charge density. As a charge
distribution localizes to a point charge, its electromagnetic energy grows more and more
and becomes unbounded®. To avoid this infinite self-energy we can think that some
saturation of field strength takes place, i.e., field strength has an upper bound. This

1/2
classical non-linear effect is given by - = [1+ biz(csz - EZ)}
€
» However, there are few problems with Born & Infeld classical non-linear vacuum
response. (1) The theory suffers from arbitrariness in the manner in which the
nonlinearities occur. (2) There are problems with transitions to the quantum domain. (3)
So far, there has been no experimental evidence of the existence of this kind of classical
nonlinearities.
* As to the last point, we may note that in the orbits of electrons in atoms, field strengths
of 10*-10"" VV/m are present. For heavier atoms, these fields can be even as large as
10?! V/m at the edge of the nucleus; yet ordinary quantum theory with linear
superposition is sufficient to describe the observed phenomena with a high degree of
accuracy.
HW: Consider a hydrogen atom unexcited and in thermal equilibrium. Calculate the
magnitude of the electric field due to its nucleus at the site of its electron.

Temporal dispersion

* If £ depends on frequency, i.e. g(a)) we say the medium is dispersive (frequency

dispersion)
2

w
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* Note that from (1) we can write
2) e=&"—-jé&"

» Remarks: Temporal dispersion means that the parameters describing the medium
response (e.g. € and . ) are functions of time derivatives. Spatial dispersion means that

the parameters describing the medium response (e.g. ¢ and . ) are functions of space

derivatives.
* If a medium is linear, homogeneous, and isotropic, we say the medium is simple.

! Recall that the potential energy (U) corresponding to two charges g and g, separated by a distance r is
givenby: U=q,Qx/4 7wt



Electric Field

» Electric field due to a point charge in origin

E-_% é—rz =% L3 % 13 where
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» Electric filed due to a point charge not at the origin
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Electric Field & Potential due to Continuous Charge

Distribution

Volume charge density, p.(F')= p.(X,y',2')
1 R ,., 1 a

dE = 4z, ﬁp\, v’ = . ‘QTZ P, dv’
1 r-r ol dv
- 4rs, m o v

L =t
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« Surface charge density, p!(F')= p!/(x',y’,z')

z A (Observation point)

X Differential
volume charge
density p;

A A (Observation point)
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« Eand V due to a line charge, p(F')= p/(X,y", 2’
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Remark: If you have forgotten the differential length, surface, and volume elements for
rectangular, cylindrical, or spherical, you may want to revisit these. See also the end of
this note set.

Electric Field of a Dipole

Recall qd = p is the dipole moment, then

e 1 [3(r- ﬁ)rﬁ]

Ams,[F[| [F[

« For our coordinate system p=p 4,



* T is the position vector in spherical coordinate, then let us express E in the spherical
coordinate

A=A(r.0,0)4 +A(r.0.0)8,+A,r.0,4),
A=A(xy,2)a,+A(x Yy 2)8,+A(xy2)a

A singdcosg sin@dsing cosé | A

A, |=|cosfcosg cosdsing —sind | A | \uith
—sing CoS ¢ 0 A

X =rsin@cos¢

y =rsingsing

Z=rcosé

P, cosé p,
p,|=|-sin@p,|=p=pa,=(cosd & —sind a,) p
p¢ 0

* Or finally from

e 1 [3(r|-2|5)r p]

>

Ams|F[|
we get
g1 ig 3r &, - (cosé a,z—sine 4,)p ra —(cosfa —sinda,)p| =

42 I i
E=—P [2cos0 4, +sin04,], where Fl=r

47rgo|f|
HW: Show that potential at point A for an electric dipole is given by
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Electric Polarization P

NAV'
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P=Ilimt*l—
a'=0 AV
p [C-m] Electric dipole moment

P [C/m?] Electric polarization vector
N [#/m®] is the number of dipoles per unit volume

« P [C/m?] is the volume density of electric dipole moment p [C-m]
Note P and D have the same units [C/m°]: D = &,E + P

» Polarization vector P may come to exist due to (a) induced dipole moment, (b)
alignment of the permanent dipole moments, or (c) migration of ionic charges.

dp

o In differential form: P =
dv

Potential due to Bound (Polarized) Surface & Volume
Charge Densities

A dielectric of volumeV'is polarized. We want to calculate the potential V [Volt] set up
by this polarized dielectric.

Differential volume
element dv’




*» An elemental electric dipole, having a differential electric dipole moment of dp [C-m],

will set up a differential potential dV = dp-dy_ aR2

4re,R
But from our definition of polarization we dp = Pdv=
dV: dpaR — PaR dvr

4ng,R*  AreyR?

Total potential V is found by integrating the above:
1 P-4
V= —2d
il

Where R? = ‘ﬁ‘z =(x=xY +(y-y)V+(z-2

Observation A(x,y,z)

A

Note that V’[%j = % (see Remarks below) then

TP () ov

and furthermore
V(f A)=f V- A+A-VE= AVE=V.(f A)-fV.A

Seurce (x',y',2')

* et A=Pand f_i then

e (% ]dv—mV'[ e[ P )

Use divergence theorem =

fife-v ] dve@cg.asf_ w(%vrﬁj o

The potential then can be written as

1 P-a ., cV'-P .,
V= {QT"S _HITO'V]

Where & is perpendicular to surface S’ bounding volumev'.

Compare above to the previously obtained expressions for V due to surface and volume
charge densities, i.e.:

V = J-J- 1 psds and V = J-J-J- 1 pvdv

Are, Are,
I:>'a‘n :ps
_V'.IS :p\’/

Or in general, dropping the prim notation since we know that integration is carried with
respect to the prim coordinate, we define



» Bound or polarized surface charge density: | o, = =F a |[C/mY]

* Bound or polarized volume charge |p, =—V - P|[C/m?]

* A polarized dielectric can be replaced by a bound (polarized) surface and volume
charge densities ( o, & p,r ). The potential setup by these bound charges then can be
calculated.

Remarks: Few useful identities

R R

VR—aR—ﬁ—E

. Of(R)

Vi (R)= R
_vzﬁ:mﬁ(ﬁ),or V2|r_1r = 475°(r ')

Generalized Gauss’ Law & Constitutive Relation D=¢E

« In free space V-E = 2.
&

* When a medium is polarized we must take into account the effects of the bound
charges, hence
V.E_P Po_p _VP_|
& & & &y
V.g,E+V- P =P, :V-(EOE+ IS):pV

Let’s define D = &,E + P then

VD = p,| — Generalized Gauss’ Law

« Also note that for D = g,E+P if P=¢,7,E thenD =g,(1+ 7, )E = £,¢,E
Where &, =1+ g, then

D =¢,,E = ¢ E|where ¢ = g,¢,




Magnetization & Permeability

« Magnetic materials exhibit magnetic polarization (M , magnetization) when subjected
to an applied magnetic field

* This magnetization is the result of alignment of the magnetic dipoles of material with
the applied magnetic field. This is similar to electric polarization which is the result of
alignment of electric dipoles of the material with the applied electric field.

Magnetic Dipole & Magnetic Dipole Moment

* To accurately describe magnetic behavior of materials quantum theory of matter is
needed. However, accurate qualitative and quantitative description can be found using
simple atomic model (semi-classical)

* The electron orbiting the nuclei can be thought of as a small current loop of areads,

with current I,
* As long as loop is small, its shape can be circular, square, or any other closed curve

A A

A, A

i i ds

» The magnetic dipole moment is given by
dm, = A, 1.ds,[A-m?,
where A, is perpendicular to the loop surface.

» The magnetic field of the current carrying loop at large distance is similar to the field of
a linear bar magnet, i.e., a magnetic dipole.

« For a material of volume Av which contains N, magnetic dipoles (orbiting electrons)

per unit volume, the total magnetic moment is given by
N, Av N, Av

m, = Zl:dmi = ;ﬁilidsi



« The magnetic polarization, i.e. magnetization (M ) is given by

~ 1 1 N, Av 1 N, Av
M = limt [—mt}zlimt [— dei}zlimt L— Zﬁilidsi} [A/m]
Vo

av—0| AV awo0| AV AV—0

« Note that magnetization (M ) is the volume density of the total magnetic dipole moment
(m, ), and also the fact that magnetization (M ) has the same units as the magnetic field

intensity, H [A/m].

« In absence of an applied field (B, = 0) the magnetic dipoles point in random directions.
However, when B, = 0, the dipoles will experience a torque given by
A7 = dm; x B, =|dm,| B, |sin(£dm,, B,) =|l,ds;|

B, |sin(£1, B,) =|1,ds;B,|sin ¥,

* Subjected to the above torque, the magnetic dipoles realign themselves such that their
moment (dm. ) is collinear with B, (see figure in the next page)

Y, >0=>A7 -0

Remark: Comparing the similarities between the torque & potential energy for electric &
magnetic dipoles

AT, =dmxB, AU, =-d
A7, =dpxE, AU, =—d

)

3

a
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» From next page figure we see that in absence of an applied magnetic field, we can write
(D) B=uH,.

But, when a magnetic material is present, a magnetic polarization (M ) is also present
and an additional term must be added to (1). In order to take into account the influence of
the material, we write

(2) B=poH, + oM = o (H, + M)

« However, M is ultimately related to the applied field H,. If we assume
3 M=yx,H,,
Where y, is a scalar (or tensor) function then we have

(4) B=pollt o] Ha = pto 1, Hy= i H,,
Where p, =1+ y,,is the relative permeability and x is the permeability.






Bound Magnetization Current Density

* Recall that for an electric field applied to a medium we had

Psp = I:ﬁ)'é\-n

P =-V-P, where P is the electric polarization, p,, and p,, are the volume and
surface bound charges, and &, is the normal to the surface.

* Similarly, for magnetic field applied to a medium we have

Jo, =M x4,

jvm =VxM

« Here, J_ is the bound magnetization surface current density [A/m], J . is the bound
magnetization volume current density [A/m?], and a, is the normal to the surface.

Remark:

The origin of magnetization (M ) can also be visualized by the following:

« When B, = 0, the magnetic moments line up with B, to minimize the potential energy as
shown in the figure.

* Since the number of dipoles is very large and therefore they are closely packed, in the
limit, the currents of the loops within the interior part of the medium will cancel each

other and only a surface current (J ) on the exterior of the slab remains.

« This bound magnetization surface current density (J ) is responsible for producing the
magnetization (M ).

* So far we have only considered the magnetic moment of the orbiting electron; however,
a magnetic moment can also be assigned to the spin of electron.

* Only electrons in the atomic shell that are not completely filled will contribute to the
spin magnetic moment.

« In general the magnitude of the spin magnetic moment is ~ +9x10 % [A-m?].

* There is also a magnetic moment associated with the nucleus

DC Conductivity

* Consider a small cylinder containing N electrons per unit volume, where electrons are
moving with velocity v .

N =Number of electrons per unit volume [1/m°]
v = Velocity vector of electrons



e = Electron charge
A = Normal to the surface
AV =Volume of the cylinder

* The total chare (AQ) contained within the volume (AV ) is given by

AQ =N e AV, where AV =AS -V At

hence
AQ =N e AS A-V At. This implies

« We define N ev = J, where J is the current density vector [A/m?] and AQ/At = Al ;
then we have Al =J-A AS

Ly =Al=NeASA-v
At

Remark:
« Al =J-AAS can be written as dI = J -1i dsin differential form, —» /\/\/\@
which implies E

= 1= ”J N ds « This is our standard equation for
calculating current from current density.

« Let us assume a linear relationship between velocity (v ) and electric filed (E), i.e.,
V =—u E, where 4 is called mobility [m?/V-s] (note E and V are anti-parallel)

*ThenJ =Nev=-NeuE,forelectron e =—q=-1.602x10" [C]

=J=qNuE

« Compare the above to J =o,E = o, =q N x. This says that static conductivity is the
product of electron charge, electron density, and electron mobility.

* In our analysis so far we have only considered the electrons, however when positive
charges (ions of holes) are present we must consider the contributions of both carriers to
the conductivity. The static conductivity is then modified according to:

o, =0 N, . +q Ny 4,
=Electron mobility
4, =Hole mobility
N.and N, are electron and holes densities [1/m?]



Time Harmonic or Sinusoidal Steady State
Electromagnetic Fields

» Assuming time harmonic fields, the instantaneous field E(x, Y, z,t) and the complex
spatial field E(x,y,z) are related by

E(x,y,z,t)=Re[E(x,y,z)e/]

H(x,y,z,t)= Re[I:l (X, Y, z)ej‘”t]

Conductivity (DC & AC)

oD

* The Amper’s law given by VxH(x,y,z,t)=J, + o, E =

=J. +J_+J, canbe

written as
VxH(Xy,2)=J +J.+J, =J +0.E(X,y,2) + jos E(X,Y,2)

* Where ¢ in general is complex: e = &' — j&" and o is the static (DC) conductivity (this
IS due to free carriers; i.e., electronsat @ =0).

» The Ampere law then can be written as:
VxH=J +0E+jo(e-je")E=J +(c,+0&"E+ josE =J,+0,E+ josE
where we have defined the followings:
o, =0,+w¢" =0,+0,; where o, is the equivalent (effective) conductivity [1/Q-m]
o, = we" =Alternating (AC) conductivity [1/Q-m]

{ 1N g (for conductors) _ .
o, = = static (DC) conductivity [1/Q:m]

4#.N.q+ 24, N, q (for semiconductors)

* Note o is due to free charges at @ = 0 (a signature of true conductors).
* o, Is due to “resistance” of the dipoles as they attempt to align (rotate) themselves with
the applied field.

* The phenomenon of dipole rotation, which contributes to o, is sometimes called
dielectric hysteresis.

« For good dielectrics such as glass or plastic o, ~ 0, but these materials when exposed to
alternating fields (o, =# 0) can dissipate large amount of energy. Example of large o, and

its application are:

- microwave cooking

- selective heating of human tissue

- removing sulfur from mineral coal to produce clean coal (selective heating)



*NoteVxH =J +0,E+ josE=J,+J_ +J,
J; =Impressed current density

]

» =0,E=(0,+0,)E = (o, +we") E : Effective conduction current density
J,, = joekE : Effective displacement current density

Loss Tangent

« Note that Amper’s law given by VxH = J, + ¢,E + jocE can be rewritten as:

O

VxH=1J + ja)g'(l— ] 'jE =J + ja)g’(l— jtan 59) E, where
we
tan 8, = Effective electric loss tangent

O O O
tang,=—=—2+—"2 =—=> 4 s 42
! ’ ! ! ’ !

we' weE we we & & 1
=tano, +tan g,
with

tan g, = s

: Static (DC) loss tangent

-
14

tano, = g—' . Alternating (AC) loss tangent
&

» Manufacturer usually provides loss tangent or the conductivity.

* Note that in the above discussion we have expressed the conduction (DC) and dielectric
losses (AC) in terms of effective conductivity (o, ) or effective loss tangent (tan s, ). We

could have also formulated the problem in terms of complex permittivity.

O

!

» To see this we write: VxH = J. + ja)g’(l— i
weé

jE:Ji+ja)gCE,where

!

we
* In the expression for ¢, the free carrier losses and dielectric losses are clearly evident.

ac=e'(1—j v j:e'—j(m)w'—j(ﬁw")
(0] (0]

* Remark: The presence of static conductivity as a separate mechanism of loss in addition
to the dielectric loss (&") can also be observed in the Kramers-Kronig relations which
connects the real and imaginary parts of the dielectric constant. When a medium has
static conductivity o, then Kramers-Kronig relations are given by



2
-

froN _ 0, 20 {Re[g( )]/go} 1 o
g"(w) = Im[e(w)] = p, j e

¢'(0) = Re[e(w)] =1+ = pjw{lz[e(wzl/go}dw,

where P stands for the principle value integral.

Boundary Conditions

» Maxwell’s equations in differential forms are point equations; i.e. they are valid when
fields are: single valued, bounded, continuous, and have continuous derivatives.

» When boundaries are present, fields are discontinuous; hence to find the fields we must
rely on their integral form.

« Boundary conditions for tangential H :
Assume finite conductivity (o, o, # ) and no sources on boundary (Mi =0,J, = O)

- _ 0 ¢~
H-dl = E-dS+—||D-ds (1
o ffos
* Taking the limit of the both sides of Eq. (1), the Left hand side (LHS) can be written as:
lim §H -df = lim |[ A, -dl, + [ F, -,

AyaoC Ay—0 y
—H,-Ax4,—H,-Ax 4, =(H,—H,)-Ax 4,
n
* The first term on the right hand side (RHS) C,
of Eq. (1) can be written as: @ £, Ly, O, TS
lim [[ o -ds = lim [[oF -dxdy 4, Y 5
Ay—0 5 Ay—0 g ///__*_:\‘
° «—
= lim [oEAxAy-4,|=0 @ w0 , A

Ay—0

* The second term on the RHS of Eq. (1) can be written as:
0 (= A o 0 = A
lim —HD ds = I|m—_[ID-dxdy 4, = lim—(D-AxAy &) =0

Ay—>0 Ay-0 ot

* Putting it all together:
a.-(H,—H,)Ax=0=4,-(H,-H,)=0.

* Note that:
4, - H, =Tangential component of H, WRT the interface,



4, - H, =Tangential component of H, WRT the interface.

* Also the fact that we can carry the same analysis in the y-z plane which results in
a, -(H2 — Hl): 0, with &,-H, and 4, - H, designating the tangential components of the

H fields. The conclusion is then the following: tangential components of H are
continuous across the boundary between two dielectrics. This all can be summarized as

ﬁx(ﬁz —|:|1):0

Boundary Condition on Normal Components (Not

corrected)
Medium (1) and (2) are non conductors (dielectrics) (o,,0, # o) and there are no

sources at the boundary o, = p,, =0

@ Ex My, 0,y I
—

@ &1y 1,0, / o

D=

z A
f§D-ds =[[[p,av
LHs:
lim §5-ds = lim|[] 5, -ds + [[ 5, -ds |- lim|[ B, - dxczd, - [] B, - dxdza,
_AI;TO(D Aa, - DlAan)
RHS:
lim [[[p.dv = lim[p,AyA]= A lim p,Ay = Ap, =0
Then

(D,-D,)-4, =0 f-(B,-D,)=0< f-(5,E, —5,E,)=0



Summary of boundary conditions

General Case:

« fix(E, - E,)=-M, J

M : Fictitious magnetic current density [V/m] A
AX(HZ_Hl):js @ Ey iy, O, I X

J.: Electric surface current density [A/m] o ‘\
A (= ~ &15 Hy, 0y
n'(DZ_Dl):pes @

P, - Electric surface charge density [C/m?]

fi- (BZ - B‘1): Prs
P - Fictitious magnetic surface charge density [Weber/m?]

Boundary Conditions Between to Perfect Dielectrics:

nx(E —El) 0,
fix(H, - Hy)=0

n(f) D,)=0,

i-(B,-8,)=0

Boundary Conditions for Two Media in which One Medium Is a Perfect Conductor
(o, = ), With no Sources Present (M, =0, p, . =0):

« In medium-1, since perfect conductor = E, = D, =0 then VxE, = —% B,=0 :gB1
. But this means that B, must be a constant function of time which contradicts the
assumption of time varying electric and magnetic fields; i.e. the electrodynamics

assumption. Therefore, B, = H, =0

« ix(E,—E,)=-M, = AixE, =0
Electric filed has no tangential component on the boundary between perfect conductor
and dielectric.

. ﬁx(l-—l2 - I:|l): js = fAxH, =1J,
Tangential component of H is discontinuous by amount of surface current J_ at the
boundary between perfect conductor and dielectric.

« J.is the surface current due to the free charges on the metal (not the bound charges)



¢ ﬁ(DZ _Ijl):pes = DZ = Pes
Electric field has only normal component on the boundary between perfect conductor and
dielectric.

«i-(B,-B,)=p, =1h-B,=0
Magnetic field has no normal component

on the boundary between perfect conductor
and dielectric.

Boundary Conditions Between Two
Medium one of which Is a Perfect
Magnetic Material (the medium has
infinite magnetic conductivity, i.e.

H,, =0) and no sources are present (
Pes =0, js =0)

eHere H,=0=B, =0, E,=D, =0

« ix(E,~E,)=-M, = AxE, =M,

Electric filed is tangential to the boundary

e fix(H,-H,)=J, = AxH, =0

Magnetic filed has no tangential component on the boundary

« i1-(B,-B,)=p, =A-D,=0
Electric filed has no normal component at the boundary

¢ ﬁ(BZ _gl):pms =n- BZ = Pms
Magnetic field is normal to the boundary



Differential length elements

Rectangular Coordinate System:
Cylindrical Coordinate System:

Spherical Coordinate System:
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