nservation of Energy & Poynting Theorem

« From Maxwell’s equations we have

VxE=—NM - __N -,
ot

oD

VxH=J +J +—=J,+J +J,
ot

* From above it can be shown (HW)

V-ExH+H-(M,+M,)+E-(3,+3,+3,)=0 or
fExH -ds+[[[H-(M;+M,)dv+[[[E-(J,+T,+ 3, )dv=0
S v v

» We rewrite the above according to

JE <5 0803 )ave [0, o [[E-3, v [ €3, =0

28

fiEx s as [fj(A-m, +E-5i)dv+u'j(ﬁ %j dv+jﬂ(l§-%—'tjj v+ [[fE3, =0

* Let us define

H-M, +E-J, =—p,,,., where p_ =Supplied power density [Watt/m’]. Then

[[[(H-N+E-3,)dv =~ [[[ oy dv =Py, [Watt]

» Moreover we assume that medium is not dispersive or lossy, then

e v - C8 o= ] -
W%%(u A'H)dvzgméﬂ\”\zdhgwm

W,

2

2
W, :[E-A—m3 “HA? =Y S A~ Watt-s=J
m m A

%Wm = Rate of change of stored magnetic energy: [J/s = Watt]
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=.J =0, 10 = o rpl e 0
< JIfE-3, o= [[fe- S € = [[[5 S lef cv- (][ lef ev-Sw,
R

e

€ 2

2
W :{E-V—m3 :J}
m m

%We = Rate of change of stored electric energy [J/s = Watt]

. wg.jc dv:J.JJ.E-aE dv:jﬂa‘ﬁrdv: Pis

P

disp

. . | S VA Vi
=Dissipated power (ohmic loss): | ——:—m’ =—— = Watt
Q-m m Q

. ﬁExI—T-(E: P..

- A
P.... =Power exiting the volume enclosed by surfaceS : {—-sz = Watt}
m m
» We can rewrite Poynting Equation
0 0 . :
Pt +5Wm +5We +Py, =P,  Thisis Conservation of Energy

Time Harmonic or Sinusoidal Steady State
Electromagnetic Fields

« In time harmonic picture the instantaneous field E(X, y,z,t) and the complex spatial
field E(x,y,z) are related by

E(x,y,z,t)= Re[E(x, Y, z)ej“"]

H(x,y,z,t)= Re[H (x, Y, z)e‘“]

« Remark 1: Fields can also be described as imaginary parts
E(x,y,2,t)= Im[E(x, y, 2)e |

« Remark 2: Most engineering books (not all) use time dependency ofe’”, most
physics books (not all) usee ™, i <> —j
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« Remark 3: We will see that for e'” the wave e e and for e the wave e"’e”'
are positively traveling waves
e+jkzejﬂ</\/\/\_w e—jkzej(ut
, Z
« With help of e’ time dependency %@ jo
* This is similar to circuit analysis for which %(—) S=0+ jo© jo
‘Ex: vxE-_-B
ot

VxE(re = _aﬁ A (r) el

e VxE(F)=—u jo H(F)e' = VxE(X,y,2)=—jou H(x,y, 2)
* Or in integral form

§E-d|‘=—jw”ﬂﬁ-d§

c S
Poynting theorem for time harmonic fields
* VxE=-M, - jouHand VxH =J, + jos E+c E= (1)
« VxH =) - joc E"+0 E* )

* From (1) and (2) we have (HW)

_%(H*-Mi+E-Ji*):V %E H +— G‘E‘ +Ja’[ ‘H‘ __S‘Eﬂ

Or

——ﬁj(H ‘M, +E-J;)dv= ﬁ—ExH ds+m olE[ dv+ja)UJ.j wA[ dv - m o|E[ v

« Ifeand uare complex (¢ > &' — je" and g — 1’ — ju" ) then their imaginary parts

contribution to the dissipated power must be added toP, = ”J%J‘E‘z . In other

words, the term ja)D”% y‘ﬂ‘zdv - j ”% g‘Erdv} is considered as reactive (purely

imaginary).



Poynting Vector
» Instantaneous Poynting Vector is defined as S(F,t)= &(F,t)x #(F,t)

« Note: in the followings I use the scripted letters &, #7,...to designate instantaneous
fields, i.e. &(F,t) and #(F,t), and regular letters E(r), H(F), to designate the time
harmonic fields, i.e., only the spatial dependency

» We are to write the §(F,t) in terms of time harmonic fields E(r ), H(r)
5(r.t) = Re|E(r)e [« Re[Hi(r, t)e |

* Note that: Re[A]x Re[@] # Re[Ax B]

=~ jot = * o — Jot dp ot q*a—jot
. 3(?,t)=@(f,t)xf[(f,t)={Ee +2E € }{He +2H € }:

5(r.t) = E(F,t)x 5 (r,t) = %Re[E A+ E x Fe™]

* Now let’s calculate the time average of §

lT
S:ave :<§>:?J.S; dt
0

» Whereas, the instantaneous Poynting vector in terms of the time-harmonic fields is
given by:

3(r.t)= %RG[E xH *]+%R6[E X I:|ej2“’t]= <§>+%Re[€ X HeZJwt]
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A remark on time average of energy densities

» Recall we defined magnetic energy as W_(t)= %m ,u‘ff (r,tjzdv

» Now, let’s calculate the time average of this quantity i.e., (W, )

wm(t)%ﬂ w2 92(7,t)- 92(r,t)dv but 7(F,t)=Re[H(r)e* | then

Wm(t):% [[[ Re[He ™ | Re[He ™ jav

1 H joot H* —jat H jot |:|* —jat
WmZEIJIﬂ e +2 € e +2 e dv

L AR e R o
=T hrelA-Fe ] A
- arel- e v ]l

* The time average is given by
T T
Wo)=g= i vl Pt Jatav-+ TS

)= 1T .

* Similarly

W)= Jf[ A€ av

Lorentz-Lorenz Dispersion

» We model the oscillating electron and nucleus as a mass and spring

* This electron oscillator model is often called Lorentz model. It is not really a model
for atom as such, but the way that an atom responds to a perturbation. At the time
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when Lorentz formulated the model, it was not known that nuclei have massive mass
as compared to the electrons.

* The Lorentz assumption was that in absence of applied electric field the centroids of
positive and negative charges coincide, but when a field is applied, the electrons will
experience a Lorentz force and will be displaced from their equilibrium position.

* He then wrote “the displacement immediately give raise to a new force by which the
particle is pulled back toward its original position, and which we may therefore
appropriately distinguish by the name of elastic force.”

* Once field is applied the electron moves, but we assume nucleus remains stationary

S
m
E @ @ - X
_
p Wwm

» Spring has a restoring force F,_, =-S X

S =Spring tension coefficient
» There is also friction within the system: F ... = —Dj—: =-Dv

D =Friction coefficient

* The friction (damping) is the result of electron interacting with other atoms, electrons,
lattice potential, defects, vibrational mode of the material, etc.

* Equation of Motion:

d’x
dt2 = Z I:i = Fext + Ffriction + Fhook

F... =External (applied) force = QE = QE,e'* (assuming time harmonic fields)
Foos = —SX (spring or hook force)

m

Fricion = —D% (friction force) then
2 2
* md ;(+D%+SX=QEOEJ-M:>d_;(+2%+§X:QEO ejwt
dt dt dt© mdt m m
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» Let’s define

m m
d*x  dx . QE, ix

+y—+w, X=—""2g 1
dt2 7/ dt 0 ( )
QE, is force [ﬁ = 22 = acceleration}

m mass | kg s

1 1
y 1| —=Hertz w, :| —= Hertz

S S

2
Eo iot: . . .

) ((jjtzx + 7’% +w,"X = be""t is a second order, linear, non-homogeneous differential
equation

* Solution to above consist of two parts: complementary (X.) and particular (x,)
solutions

« Complementary solution, which is the transient response, is the solution of

. . . . E, |
homogeneous differential equation (i.e. the forcing termhe""t =0)
m

» Complementary solution (transient response) >0 as t —» o

« Particular solution, which is the steady state solution, is of interest to us.

* Let us assume time-harmonic solutions such as x, = x,6* and substitute this in our

differential equation =

2 : 2
=X, ®" + Xy + X0, =

x, = — /M with y =D/m and @,” =S/m

0 2 .
v, -0 + jyo

Calculating Permittivity & Susceptibility

jot
* Recall x = x,e'” = ?Eoez /r-n =— QEz/m —, where E = E e/
@, —w + Jyw @, —0 + Jyw
I) Assume that dipoles are identical
IT) Assume no coupling between dipoles
IIT) There are N dipoles per unit volume. In other words, N is the number of dipoles

per unit volume.




« Polarization P(t) is given by P(t)= NQx where Q is charge associated with dipole
[C]. NQx has dimension of: {% -C-m= 3}

m m?
QZNE/m

« Using P(t):QNx we have P(t): 3 >
W, —o + Jyo

Q’N/m

. P
» We calculate the ratio — = - —
a)o - + j;/a)

*Recall P=¢,7.E= . P =
&E

Q°N/me,

2 g
0, -0’ + jyo

g =

2
» We define QN = a)p2 where a)pzhas the dimension of: iz

me, S
Then

2 2

w, w,
e =55 = & =lty. =l+— :
w,” -0+ Jyo ®,” —0° + jyw

» Compare &, above with Jackson (3™ Edition) Equation 107

2

& a,

—=1+— T
& w, —0° —lyw

* Real and imaginary parts of ¢, (¢, =¢/ — je; ) are given by

e
o (a)02 - a)z)z +(wy )

2
w,0 Y

+1

e o e

» Recall that the displacement of electrons subject to the force QE e’ was given by
QE,e’™* /m
w, -0’ + jyo
equilibrium is sinusoidal with time at the frequency of the source

—y plot _
X =x,e'" =

. Note that the displacement of electrons from

35
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» If there is no damping (no friction in our mechanical model), i.e., D =0 = y = 0then

E,/m .
XZQzLerl,and A e (1)
2

W, —o % w, —®

* Note as w = @,, X = oo . The frequency o = w, is called the resonance frequency of
the system. This model predicts a catastrophic response at @ = @,

2

o
* Note that if there is no damping (y =0), &, =¢' =1+ —"— and &/ =0.
w, —®

« If resonance frequency is also zero (@, =0, the case of free charges), then
2

g, =¢'=1-—"-, which is negative for o, > o.
w

« While above considerations do not predict losses in the case of free charges (@, =0),

there is in fact conduction losses associated with the free charges. Recall the
discussion of static conductivity and its origin.

» When damping is present, the resonance frequency is the root of the characteristic
2

X
+y—+w, x=0, for real

equation of the homogeneous differential equation i m

frequencies.

» Resonance frequency is then given by @, =\/@," —(y/2) =+m,’ - a* where

o= g = %2 and (002 > a” (case of underdamped)
m

Note:if y=0=>a=0=>0, =@,

The case of multiple resonances
* Now, suppose there are N molecules per unit volume and each molecule has Z
electron, and there are f, electrons per molecule that have the binding frequency

(resonance frequency) @, and damping constant y; then

2
:1+Q NZ f , where

2 2
me, W, —w + ]Jy,w

&

r

f; =Oscillator strength and ) f, =Z
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Wave Equation

» In the following the field quantities are instantaneous. For the moment we assume &
and M are constant (WRT frequency).

~ 0B - 0 - -
VXE=———-M, =—pt—H — M. 1
o TS ; (D
-0~ - - OE _

VXH =7 +—D+7 =7 +e-—+0.E 2
x ]1 6'[ jc jz & 61: GS ()
From (1) we have VxVx@z—Vx(y%f[j—Vxﬁ/ti 3)
From (2) we have Vxfo[:ij.+ng%(E+ansf (4)

« Note that VxV x 4 =V(V-4)-V>4 where V21 = Va4, +V’A4, +V’ 44, and
szélx = V~(V ](). Laplacian is the divergence of gradient

* Then (3) can be written as

v(v-@)—vzfz—vw(gﬁj—wﬁi )

* Suppose that medium is magnetically homogenous ( x is independent of ) then
0 - 0 —
Vxul —H |=u—VxH
" (at j P

« Use Ampere Law [Eq. (2)] for Vx % in Eq. (5)
We have

_ )~ 0 - - _ OE _ _
V(V-E)-V*E=—-uVx STV XM = T+ e+ 0B | =V X
Or

2

_ - 0 - o0 - 0 - —
VE=VV-E)V+ u—7 + ue—FE+ uo. —E+V x M.
(V-E) por Tt pe =B+ po— 1

« From Gauss Law recall V-E = p, /& then

Wave equation for electric field:

_ 0 - _ 0> - 0 - P,
VE=u—39+VxM +eu—=E+ uo.—E+V| L= 6
Hat T Ty (gj (©)



» Wave equation for magnetic field:

5 _
VZ}?:ggﬂi +o M —Vx]J, +5ya—2ﬁ+yasa—7{+v Lo (7)
ot ot ot u
« For source free region ¢, = 7, = p,, = O0we have
_ 0 - O0E
V*E = ue—E + puo,— 1
HESa Bt O (1)
« If conductivity is also zero (o, =0) then
e O
VE=pus—E€
e
 Time harmonic wave equations:
V’E = jou J, +V x Mi—a)zgyE+ja)yaSE+V(&j )
&
V*H = joeM, + oM, -V xJ. — &’ guH + jouo H +V[@] (3)
y7;

* In the case of time harmonic fields for source free but lossy medium, we have
V’E = —uew’E + jouoc E = —u(e' - je"\o’E + jouc E = @
[~ue'o’ + jou(o, + we")| E =[-ue'o’ + jouc,] E

where o, + we" = o, + 0, = 0, is the effective conductivity.

« Define: > =(a+ jB) = —ue'@w” + jouo, with o and S designating the real and
imaginary parts of the y, y =a + jf, where

a = Attenuation constant [Np/m]
S =Phase constant [rad/m]

y =Propagation constant [1/m]
then
V’E =[-us'e’ + jouc,]E = V’E =y’E

* For lossless case (o, =0) from Eq. (4) we have
VE=-0’us' E

0
—

« Note for lossless case y* =(a + ) = jouo, — ug'w® = —us'w® . Then
y=a+ jf=+—-uso’ = jous’ - a=0and S =w, us' in the case of lossless

medium.
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« Then V’E = -’ ueE = —B°E where
2 2

2
2 2 2 @ ([ " w
/B =0 HE =0 HyE M E, :T:ur ;:C_Z( 'I’lr‘c"r)2 :Fn’ , Or /B:€n,

Solutions to Wave Equation in rectangular Coordinate
System

« Wave equation for scalar components of E

VE=-pE= szxa +VEA +VE4, =B EA4, +EA +E4,|=

sz :_ﬂzE = Ex(x y,Z)
V’E, =—4’E, | = with E _Ey(x y,2)
VzEz :_ﬂ Ez = Ez(x y,Z)

* As an example the x-components of the electric filed must satisfy the following:
V’E, (X, Y,2) =—B°E, (X, Y,2) =

0’ 0’ 0’

) — E(X y,2)+ay E.(X,Y,2)+— ) 7 Ex(X%,Y,2) ==BE,(X,Y,2)

The differential equations for other components of the field are similar

* To find the solutions for E, we assume E, (x,y,z)= f(x)g(y)h(z) and use the
separation of variables technique to get
2 2 2
1d°t(), 1dly), 1d*h(2) | po
f d* g dy> h dz’

) _ g 1),

dx

d’g(y) _

dizy =-5; a(y),
Ihle)_ g2 ),

2
: , @, : o ,
With g7 + ﬁy2 + B = =0 us' = —-n"?, which sometime is called the constraint
C

equation.

« Solutions are

d dfx(X) -8 f(x) = f.(x)= Ae " + B e
f,(x)=C, cos(,x)+ D, sin(f3,x)

39
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d? i ol
dg)ll(Zy) = _ﬁyzg(y) = gl(y)= Ae e B,e "y
gz(y) =C, cos(ﬂy y)+ D, sin(ﬂy y)
=-p,’he  h(z)=Ae " +Be
h, (Z) =C, cos(,BZZ)+ D, sin(ﬂzz)

d2h(z)
dz?

« e""*gre called traveling wave solutions
« cos(/3,x) orsin(, x)are called standing wave solutions

* The type of solution chosen depends on the
problem and the boundary condition. X

wave guide
e

* For example, for waves confined in the x-
and y-directions and traveling a long the z- /
direction we have:

E,(x.¥,2)= f(x)a(y)h(z) = .y
[Cl cos(ﬂXX)Jr D, sin(ﬂxx)]-
[C2 cos(ﬂy y)+ D, sin(ﬂy y)]

~ify2 +ip.
Ae + B,e

e ¥ is the positively traveling wave and e*”*is the negatively traveling wave (for

time dependency of /')

* To see this note the following
E= Re[EX(X, Y, Z)ej“’t]: [C, cos(B,x)+ D, sin(, x)]- [C2 cos(ﬂy y)+ D, sin(ﬂy y)]A3 cos(at — S3,2)

For our choice of e #?gl

« Let’s plot cos(wt — f,z)for different times



* To follow the point Z ; at different times we must keep A, cos(a)t -p.Z, )constant

15p F(z,1) =cos (ad — 1)

z(inA)

Magrwiude| 72, )
o
o

=15
= We must keep the phase wt — 5,Z  constant with time = wt— 8,Z , = constant =

d dz dz @

—(@t-827 )=020-B,—L=0=>—L=""=V
dt(a) :Bz p) = @ ,BZ dt = dt ﬂz p

vV, = @ is called phase velocity

z

Solution to Wave Equation in Source Free but Lossy
Medium

* Recall wave equation for lossy medium was given by

VZE:[—wzg'y+ja),uO'e ]Ez}/zE (1)
where y* = —w’e'u+ jouo, = (a +jpy

* Once again Eq. (1) =

VE, (X, Y,2)4,+V°E,(x,y,2)4, + V’E,(X,V,2) =

7*(E,a, +E,&, +E,4, )= V?E,(x,y,2) = 7°E,(x,y,2) and so forth for E, and E,

41



» Once again we propose a solution of the form E_ (x,y,z)= f(x)g(y)h(z) and use

separation of variables to show
2
I 2h(x),

dx?

2

d?,(zy) =+ yzg(y)a
d?h(z

dZE ). +7,°h(z),

With y,” +y,” +,” = y* constrained equation

« Then E,(x,y,2)= f(x)g(y)h(z) is given by
f,(x)=Ae7 +Be™

f,(x)=C, cosh(y, x)+ D, sinh(y, x)

0(y)= A + 8.6

gz(y) =C, cosh(yy y)+ D, sinh(yy y)
)=Ae 7" +B,e’

,(z2)=C, cosh(y,z)+ D, sinh(y,z)
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* Exponential functions represent attenuated traveling waves and hyperbolic cosine and

sine represent attenuated standing waves

* Choices for the sign of »

* Recall we had y* = (a + ] ﬂ)2 = y= i(a + ] ﬂ). We could have equally defined

7= (a - jﬂ)2 =>y= i(a - Jﬂ) then we have four choices:

y=a+jp
y=-a-jp
y=a-|jp
y=-a+jp

which one should we choose

7, =a, + jB, = e’ =e ¢ travels along +z-axis, decays along +z-axis
7, =—a, — |, = e’ = e’/ travels along -z-axis, decays along —z-axis
7, =—a,+ |B, = e’ =e e ¥ travels along +z-axis, grows along +z-axis

v, =a,— jf, =>e 7 =e e travels along -z-axis, grows along —z-axis
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« For a positively traveling wave (+z-axis) in a passive media (media with no gain or
external source of energy), we must have a wave that decays as it moves further in the
media. Hence, the correct sign for a positively traveling wave in a passive media is

7/Z = aZ + jﬁZ

e_}/zZ — e_azze_jﬁzz

with our choice of time dependency of e

Summary

_ e 2 for positive z traveling
* Traveling waves

e for negative z traveling

. cos(f,z ) for positive or negative z
« Standing waves (8.2)forp - 8 ,
sm(,é’X Z) for positive or negative z

e “* for positive z
 Evanescent waves '
e for negative z

72 = g~%*e 2 for positive  traveling

« Attenuated traveling waves

V22

e’ =e“’e” for negative z traveling

« Attenuated standing waves
cos(y,2) = cos(a,z)cosh(f3,2)~ jsin(e,z)sinh(3,z) for positive and negative z
sin(y,z) = sin(a,z)cosh(f3,2) + j cos(e, z)sinh(3,z) for positive and negative z

cos(y,z) = cos(a,z + jB,2) = cos(a,z)cos( jB,2)—sin(e,z)sin(j3,2)

* Note that:
o = cos(a,z)cosh(/3,2)— jsin(e,z)sinh(f3,2)

Wave Equation in Cylindrical Coordinates

« Previously we solved the wave equation VE =—£E in rectangular coordinate
system for lossless and source free region

* Suppose that boundary condition (the geometrical consideration) of the problem
requires us to solve the wave equation in cylindrical coordinates. How do we go about
this?
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* In cylindrical coordinates
E=E,(0.4,2)4, +E,(p.¢.2)4, + E,(0.4,2)4,

- Then V’E =—f°E = V*[E 4, +E,4, +E,4,|--4(E,4, +E,4, +E,4,)

* But
v:(E,4,)%4,V’E, and

<\l A = v
VZ(E¢a¢)¢ a,V’E, N
while, |

Vz(Eza’\'z):a’\'zszz YA

—» Q>
Q>

Q>

« Then how do we solve V’E=-p*Efor | £ 20
E= E,a, +E,a, +E,,? Inother words, what is
V’E? X

« Note that V>E = —/*E was obtained by using
V’E=V(V-E)-VxVxE

« Using above in V’E =—-£”E we have
V(V- E)— VxVxE =-B°E (Wave equation in lossless source free region)

o, .
Where f = w,/us' =—n’ is a constant
c

* In cylindrical coordinates

V-E =ii(pEp)+li st o E,
yoXol; 0z

and

3 OE oE
VxE—a | L% % a, 9e _%E |+a ii(pE¢)_l ,
: ’ op p op p 0p

- The use of V-, V and V xin cylindrical coordinate in V(V-E)-V xVxE = -8°E
will result in three partial differential equations:
E, 2 0E,

szp +(—p—§—? a¢ j:—ﬂzEp

v
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E 2 oE
/
V'E, +[__2+_ pj=—ﬂzE¢

p’ p* 0f
V’E, =-f’E,
where,
2 2 2
Vi Oy 1oy 10y Jv

" pop pof o
with 1//(,0,;15,2)5 E,, E,.or E,

* Note that differential equations for E and E, are coupled partial differential
equations while the differential equation for E, is not coupled

» The solutions of V°E, = —A°E, are most useful in constructing TE* and TM* modes

(TE and TM with respect to WRT z-direction) boundary value problems and will be
considered here.

« From V’E, = —f”E, and the expression for V’y (y = E, )we have

2 2 2
81/;+l81//+i281/;+8l/2/:_ﬁ2(// where (1)
op- pop p 0P 0z
v =y(p.4.2) ()

* Let y(p,0,2)= f(p)g(#)n(z). Substitute (2) in (1) and we have:

gph(z) L (o) 9N A g () HOMRIA @) ¢y ¢ ()g(pn(a)

do p dp P dg’

« Divide both sides by fgh and we get:

1 d? 1 df(p) E Bt 2
——— f LAy A
f(p)dp? ( )+p f(p) dp + 29(¢) dg? g(g)+ (2)=-p (4)

Where /3’ is a constant

2
* Since %d—z h(z), which is only a function of z, added to other terms (which are

functions of p and ¢) must equal to a constant (— 8°) for all values of z, we must
have

1 d’h(z)
h(z) dz?

= —/.%, where 3, is another constant

* Then, Eq. (4) can be written as
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2 2 2
P d P d 1 d 2 2) 2
flo)+—7—flo)J+—=—59)+\B -8, Jo" =0
Gl O TG O g o)
2
* Note that in the above, ﬁm ddi(f) , Which is only a function of ¢, added to other
terms must equal to a constant (0 here), then similar to the previous case we say
2

L d g(2¢) =-m?, where m?is a constant

g(¢) dg

* using the constraint equation we see

P d e 2 Y (g )t -
f(p)dpz f(p)+f(p)dpf(p) m +(ﬂ B, ),O =0 =

R . 2 2 2 . . . . . .
Let us also define g° - g,” = 8, (constraint equation for wave equation in cylindrical
coordinates)

d*f df

o 1), L 80) (). 5202 1(0)-0
dp dp

Where f,>and m*are constant. Above is the classical Bessel Differential Equation.

@2 (0) . df(0) (p2 o ooy
" P #8207 —m)i(p)=0

Summary

« The solution to V*y = -’y where w(p,4,2)=E,(p,¢,2)is given by
w = f(p)g(¢)n(z) where f(p), g(¢), and h(z)are themselves solutions to

d? _ 2 dzh(Z)__ 2
@d?h(z)_ b, 2 B,°h(z) (1)
1odr oo o dg(g) 5
Gag W= e =) @)
o M) L0 (2 i) =0 ()
P o

With constraint equation g,” + 8,* = f° = 0’ ue
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2 2
« Solutions to ﬁ:? h(z)=-8" < %SZ) =—,°h(z) are given by
Standing wave < h,(z)= A cos(/3,z)+ B, sin(/3,2)
or

Traveling wave «— h,(z)=C,e”** + D,e"

» Solution to @ 3222 9(g)=—-m’ = %@ =-m*g(¢) are given by
Standing wave < g,(¢) = A, cos(mg)+ B, sin(mg)

or
Traveling wave — g,(¢)=C,e” '™ + D,e" ™

- Solution to p° df () +p df () + (ﬁ 2p? - mz)f (p)=0 (Bessel Diff. Eq.) is given by

dp’ do r
Traveling wave — f,(p)= AH®(8,p)+B,H®(8,p)
or
Standing wave < f,(p)=C,J,(8,0)+D.Y,(8,0)
H® (B, p)=Hankel function of the first kind
Hrf)(ﬁpp)z Hankel function of the second kind
Jm(ﬂpp)E Bessel function of the first kind
Yo (ﬂpp)s Bessel function of the second kind

« The functions e, cos(---),sin(---),J,.,Y,,H,H? are all

valid solutions. Which one is used in a given problem,
depends on the problems at hand (particularly the
boundary conditions).

* As an example consider a metallic cylindrical waveguide. The solution inside of the
guide, 0 < p < ais given by:

vin(p.4.2)= T(p)a(¢)h(z)
= [c,3.(8,0)+ D.Y,(8,0)]- [A, cos(mg)+ B, sin(mg)]. [Cle‘jﬂzZ + Dleﬂ'ﬂﬂ]

* Note that inside the guide the solution in o must be standing waves, the solution in
¢ must be periodic, and solution in z must be traveling waves.
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* Furthermore, since Y|, (,Bpp) issingular at p =0, then D, =0=
Vin = Cst(ﬂppIAz Cos(m¢)+ B, Sin(m¢)][cle_jﬁzz +De” jﬁzz]

« If propagating fields outside the guide region ( p > a) are allowed then fields will be
traveling in z and p and periodic in ¢:

Vaulp:8.2)=BHZ (B,p) A, cos(mg) + B, sin(mg)[Ce " + De ]
Where H? (8 ; p) is positively traveling wave

* Note the following relations for Hankel functions of the first and second kind.

HY(8,p)= ﬁ e J[ﬂ:ii]“}
\Bp 5

HO (8, p)= . ﬁ2 . e‘j[ﬁ;p;i(fj_ﬂ
P 2
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Fields, Modes, TEM, Plane wave, and Uniform plane
waves

» Field is a modification of space-time
» Mode is a particular field configuration for a given boundary value problem.

Many field configurations can satisfy Maxwell equations (wave equation). These
usually are referred to as modes. Mode is a self-consistent field distribution.

« In TEM mode, E and H at every point in space are constrained in a local plane,
independent of time. This plane is called equiphase Plane. In general equiphase
planes are not parallel at two different points along the trajectory of the wave

« If equiphase planes are parallel (i.c. the space orientation of the planes for TEM mode

EY |

E;

==
-

F—— e ———

-

~d
Phase Front of TEM wave

are the same), then we say we have a plane wave. In other words, the equiphase
surfaces are parallel planar surfaces

« If in addition to parallel planar equiphase surfaces, the field has equiamplitude
planar surfaces (the amplitude is the same over each plane), we say we have a
uniform plane wave. In this case field is not a function of the coordinates that make
up equiamplitude and equiphase planes

» We mentioned wave trajectory, what do we mean by wave trajectory
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Phase fronts of plane wave

* Consider the following plane wave:
E =E,e *™“'when E,is a constant and k =

« Since V- D =0 for source free region = V-E =0then V-E = V-(Eoe“"z'”"“’t)z 0
Recall V-(f If): fV.-F+F.Vf

Then V-E =e K14y . E +E, - V|e ¥ |0, but V- E, =0

— jk-Ee kit —0=k.-E=0

« Using V-H =0 we can also show k -H =0
« It can also be shown (HW) kxE=wuH and k xH = -0 E

Summary:
k-E=0
k

RHM

50
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* Let’s assume there are situations for which & and x are both negative ¢ — —|€| and

,u—>—|,u|then
o E
k-E=0 A
~ = Meta-materials or
k-H=0
L B LHM (left-handed
k><E=—a)|,u|H - _ media)
KxH =+ E k < — S
<§ o« ExH
H

Relation between E
and H for plane waves

o _ o - - kL -
sFromkxE=0uH=k4 xE=0uH=>H =—4, xE

wu

where 4, is the unit vector along k .

e With k=“n= o\ 1,6+ 11, \Je, Expression for H can be written as
c

I:l _ a)\/ Holon K&y 4 E I:i &by ak S E aA‘k X E

axE= H-= 4 xE = = where
Ot 11y N Jule

n =+ u/ ¢ is the medium intrinsic impedance and we can define
Mo =~ 1,/ €, = 1207 = 377 [Q] as the free space intrinsic impedance.

« Similar expression for E in terms of H can be found to be
E=-—n4 xH

-

E(z, 0) = a,10~* cos ; z
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Fresnel Reflection & Transmission Coefficients
» The case of E Perpendicular Polarization:

* The interface is in xy plane
* Plane of incidence is xz plane

« Incident waves are E,,H,,K,

« Reflected waves are E,,H_,K/

« Transmitted waves are E,,H,,K,

* 0, = Angle of incidence,
6/ =Reflection angle
6, = Transmitted angle

* As stated earlier this geometry is for
E L ( E perpendicular to the plane
of incidence). This configuration
sometimes is called TE or o
polarization

E, =E,e e 4, where k, =k, 4, +k,4, with

. o _ . 12 o o
k,, =K siné, =€n1 sing, and k;, =Kk, cosé, =?n1 cosd, and k, =€n1 =?1/ﬂ151 .

Then K, =k, (sin 6,4, +cos6,a, ) and we have E, = E e l(inteosalgjoty

» Note also that

2 2

w w : w . w
k.’ +k, =k’ =k, =vk’ -k, = \/—znlz ——=n’sing =—ny/1-sin’ 6, =—n, cos,
c c c c

- a.xE - E . N :
« From H, = == we have H, = —% (-4, cosf, +sin 4, Je~llsintbeostizlg ot

m U
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» For Reflected wave we have

E, =rEe"e!*a, with

o o |-
kj|=k/ = —AHE =—_N= ‘kl‘ =k, = ki =k

C C
ki =—k/cosgd, + k/sing4, since ki =k, then k| =k, cosga, +k, sin&a,

The reflected E and H are then
E, = rE, exp[- jk,(sin @)x — cos 6z )]exp[ jot] a,

H, = L [cos@) &, +sind & |exp[- jk,(sin @ —cos 8z )]exp| jot ]
U

e Transmitted E and H are @
E, =tE,e '"el"q,

k, =k, & +k, a

2272

. o _ .
k,, =k, sinf, = Fnz sin 6,

®
k,, =k, cos8, = Fnz cos b,

(4] w
Ky =—n, =—\1,¢,

C C
E, =tE, exp|— jk,(sin&,x+cos 6,z )|exp| jat] a,

* Note that k2x2 + kzz2 = k22 =

kzz = kzz _k2x2 =

2

2
k,, :\/—2 n,’ - n,’sin’ @, = —n,4/1-sin’ @, =—n, cosh, i.e.k,, =—n, cosb,
C C Cc Cc C

He= B(— cos 0,4, +sin 6,4, )exp[- jK, (sin 6, x + cos 6,z)]exp| jwt]
M

« We now apply the B.C. at xy plane and z =0, requiring tangential E and H to be
continuous (two good dielectric)

(Ei + EI’ )tangential = (Et )tangential
(H i +H r )tangential = (H t )tangential

* Note that tangential components are along xand y
— jk, sin G x —jksingx __ — jk, sin 6,x
Ee " +rE e T =tE e

sin G,x — jk; sin gx — jk, sin 6,
! e JK 1 e JLS3 ¢l

—Ecosé’le’jk‘ +Ecos<9l' = —Bcosé?2
T 771 m,
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* The above two equations must be valid for any x then
6, =06,
k,sing, =k, siné,

0, = 0, is the first Snell’s law of refraction (i.e. the incident & reflected angles are
equal)

» Second Snell’s Law of Refraction

k;sin6, =k,sinb, <k, =k,, & — - n sinf, = c n2 sin@, = n,sing, =n, sin G,

This says that tangential component of the propagation vector across the interface is
continuous.

* The use of the two Snell’s laws (above)

will reduce our original equations to the X
following: +
r+l=t (1) K
9 —t 2z
€87 (r—1)="cosé, () >
T m k. 4
* (1) and (2) can be solved to give 2 0, ;z
"o E—r _m cos@, —n, cos b, ké?l -
‘Ei ‘ n, cosf, +n, cosb, A K.
{— E B 2n, cos b, 6,
‘Ei‘ n, cos O, +1, cosb, i

« Using 17 =/ ¢/ & and multiplying top and bottom by +/&,&,444, we have

Nyl E,cos0,— /1] & cos O, & 1, COS O, —\ 11, &, 14, c0s 6,
\/,uz/gz cos b, +\//Ul/81 cos b, \/81;11;12 cos b, +\/,U282,U1 cos b,

— 114y 14, COS O —— [ &, 14, 11, COS O,
C

(9
c &y 1, €08 6, +€ &1, 1y €08 0,
* Recall

® @
k,, =k, cosf, =—n, cosd =—./ & cosb,
C C

® ®
k,, =k, cosé, = ?nz cosd, = €1/ﬂ282 cos 6,



* Hence

r— MoKy, — ks,
oK, + ks,

and similarly

t = 2k,
oKy, + 1k,

55

(D

2)

* Note that (1) and (2) are reflection and transmission coefficient (Fresnel field

coefficients) for TE or EL polarization.

Two Interface Problem

« We consider TE or E perpendicular
polarization. The Fresnel reflection
coefficients at each interface can be
written as:

r, = MoKy, — Ky,

oKy, + ks,
t, = 2u,k),

oKy, + ik,
M, = Ky, — ks, 152

Ky, + ks, 253
r :ﬂlkzz_ﬂzklz —_r 12
21 12

Ky, + ok, 21
t, = 2u,k,, 1->2

Ky, + ks, 253
*Atz=0

(1) rA=r,A+t, D
2 C=t,A+r,D

« At z =d (slab thickness isd)

(3) At =t,,Ce ¢

(4) De™? =, Ce ™! =

(5) D=r,,Ce™ " =r,Ce™ where

(6) ¢ =—k,,d = —%nz cos 6,d

* Use (5) in (2) then

®

His &y

o |

Hys &y

k2

z

®

/“l3>g3

3z

His &5




(1) C=t,A+r,r,Ce?" =
t12

( ) 1_r21r23e+21¢

- Using (2) in At=t,Ce ™" =t,,.Ce'’ (Eq. 3-page 55), we have

- t t,t,e"”
A=tV — Lo A = 7 =t= 2B
1-r,r.e I1-r,r,e
* In a similar manner (HW) we can show
t,t, r,e??
r=r=p, +- 2028 )
1—r,r,e™"
* Note if medium 1 and 3 are the same
k,, — 1,k
then r,, =1, L L =—r, and
/ulkZZ +quklz
Then (1) and (2) can be written as @
1_(r21)2e+21¢ His €
T4 t12t21r21e+21f
’ 1—(r21)2e*2“”
¢=-k,,d= _an cosd,d
C
« From the expression for r'" we see that
if r,=r,=0,then r'" =0; i.e. there is
no reflection from the slab. This is 7 =0
called the matched condition.
K,, — i,k .
* Recall r,, L L —r,,then r,=r, =0 if
ks, + ok,

@ @
ks, = ki, = Enz cost, = u, ?nl cosf, =

My 1€, COSO, = 11,4 48, COSG = 17,08 0, =17, COS )

(1)

« What happens to t'~ (transmission coefficient) under matched condition.

56

My &
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+ig _
* Note that with r, =1, =0= t'" = Lez. =t,t,,6". Recall that
1- (r21) e
241,k 21K .
t, = o T S t, = — 2% Hence under matched condition (
oKy, + ks, Ky, + ok,

uk,, =k, )wehave t, =t, =1, which then implies
t"™ =t,t,e" =e" ¥ =e ™" and r"™ =0. This says that under matched condition the
slab only inserts a phase on the traveling wave.

« At normal incidence 6, = 8, =0, the matching condition (no reflection from the slab)
given by 7, cosé, =n, cosd, will simplify to n, =7, .

—ky,d

« Note that under matched condition with t™ =e** =¢ we can write

-2 L d]-g S LS

= — , Where we will later see
ow Ow

= = V:_
0w Owl/dk,, V ' —0¢/om

—0¢/ 0w is called the group delay.

9

- Final Remarks: you should study (self study) topics such as
critical and Brewster angles.



