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nservation of Energy & Poynting Theorem 
 
• From Maxwell’s equations we have 
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• From above it can be shown (HW) 
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• We rewrite the above according to 
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• Let us define 
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dispP Dissipated power (ohmic loss): 
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exitP Power exiting the volume enclosed by surface S : 
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• We can rewrite Poynting Equation 
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  This is Conservation of Energy 

 
 

Time Harmonic or Sinusoidal Steady State 
Electromagnetic Fields 
 
• In time harmonic picture the instantaneous field  tzyxE ,,,


 and the complex spatial 

field  zyxE ,,


 are related by 
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• Remark 1: Fields can also be described as imaginary parts 
    tjezyxEtzyxE ,,Im,,,   

 
• Remark 2: Most engineering books (not all) use time dependency of tje  , most 
physics books (not all) use tie  , ji   
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• Remark 3: We will see that for tje  the wave tjjkzee  and for tie  the wave tiikzee 

are positively traveling waves 

  
 

• With help of tje  time dependency j
t





 

• This is similar to circuit analysis for which  jjs
t





 

 

• Ex:  
t

B
E







 

    tjtj erH
t

erE   




  

     tjtj erHjrEe       zyxHjzyxE ,,,,


  
 

• Or in integral form 
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Poynting theorem for time harmonic fields 
 
• HjME i


 and  EEjJH i


     (1) 

•   EEjJH i


        (2) 

 
• From (1) and (2) we have (HW) 
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• If and  are complex (   j  and   j ) then their imaginary parts 

contribution to the dissipated power must be added to 
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Poynting Vector 
 
• Instantaneous Poynting Vector is defined as      ,tr,tr,tr
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• Note: in the followings I use the scripted letters 


,,HE to designate instantaneous 
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, , to designate the time 
harmonic fields, i.e., only the spatial dependency 
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• Whereas, the instantaneous Poynting vector in terms of the time-harmonic fields is 
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A remark on time average of energy densities 
 

• Recall we defined magnetic energy as    
v
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• Now, let’s calculate the time average of this quantity i.e., mW  

      
v

m dvtrtrtW ,,
2

1 
HH  but     tjerHtr 

Re, H  then 

      
v

tjtj
m dveHeHtW 


ReRe

2

1
 

   

  
  























vv

tj

v

tj

v

tjtj

v

tjtjtjtj

m

dvHdveHH

dvHeHH

dvHHHHHeHeHH

dv
eHeHeHeH

W

22

22

*22

4

1
Re

4

1

Re
4

1

}{
42

1

222

1

























 

 
• The time average is given by 
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Lorentz-Lorenz Dispersion 
 
• We model the oscillating electron and nucleus as a mass and spring 
 
• This electron oscillator model is often called Lorentz model. It is not really a model 
for atom as such, but the way that an atom responds to a perturbation.  At the time 
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when Lorentz formulated the model, it was not known that nuclei have massive mass 
as compared to the electrons.  
 
• The Lorentz assumption was that in absence of applied electric field the centroids of 
positive and negative charges coincide, but when a field is applied, the electrons will 
experience a Lorentz force and will be displaced from their equilibrium position. 
 
• He then wrote “the displacement immediately give raise to a new force by which the 
particle is pulled back toward its original position, and which we may therefore 
appropriately distinguish by the name of elastic force.” 
  

          
 
• Once field is applied the electron moves, but we assume nucleus remains stationary 

 
• Spring has a restoring force xSF hook  

S Spring tension coefficient 
 

• There is also friction within the system: vD
dt

dx
DFfriction   

D Friction coefficient 
 
• The friction (damping) is the result of electron interacting with other atoms, electrons, 
lattice potential, defects, vibrational mode of the material, etc. 
 
• Equation of Motion: 
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• Let’s define 
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 is a second order, linear, non-homogeneous differential 

equation 
 
• Solution to above consist of two parts: complementary ( cx ) and particular ( px ) 

solutions 
 
• Complementary solution, which is the transient response, is the solution of 

homogeneous differential equation (i.e. the forcing term 00 tje
m

QE  ) 

 
• Complementary solution (transient response) 0  as t  
 
• Particular solution, which is the steady state solution, is of interest to us. 
 
• Let us assume time-harmonic solutions such as tj
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Calculating Permittivity & Susceptibility 
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I) Assume that dipoles are identical 
II) Assume no coupling between dipoles 
III) There are N dipoles per unit volume. In other words, N is the number of dipoles 
per unit volume. 



 35

 
• Polarization  tP  is given by   NQxtP   where Q  is charge associated with dipole 

[C].  NQx has dimension of: 
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• Real and imaginary parts of r ( rrr j  ) are given by 
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• If there is no damping (no friction in our mechanical model), i.e., 00  D then 
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• Note as  x,0 . The frequency 0   is called the resonance frequency of 

the system. This model predicts a catastrophic response at 0   
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• If resonance frequency is also zero ( 00  , the case of free charges), then 
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• While above considerations do not predict losses in the case of free charges ( 00  ), 

there is in fact conduction losses associated with the free charges.  Recall the 
discussion of static conductivity and its origin. 
 
• When damping is present, the resonance frequency is the root of the characteristic 

equation of the homogeneous differential equation 02
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The case of multiple resonances 
• Now, suppose there are N molecules per unit volume and each molecule has Z
electron, and there are if electrons per molecule that have the binding frequency 
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Wave Equation 
 
• In the following the field quantities are instantaneous. For the moment we assume  
and µ are constant (WRT frequency). 
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Wave equation for electric field:  
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• Wave equation for magnetic field: 
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• Time harmonic wave equations: 
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• In the case of time harmonic fields for source free but lossy medium, we have 
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where eass    is the effective conductivity. 

 

• Define:   ejj   222   with   and   designating the real and 

imaginary parts of the  ,  j , where 
 Attenuation constant [Np/m] 
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• For lossless case ( )0e  from Eq. (4) we have 
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• Then EEE
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Solutions to Wave Equation in rectangular Coordinate 
System 
• Wave equation for scalar components of E
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• As an example the x-components of the electric filed must satisfy the following: 
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The differential equations for other components of the field are similar 
 
• To find the solutions for xE  we assume        zhygxfzyxEx ,,  and use the 
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• Solutions are  
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    zjzj zz eBeAzh    331  

     zDzCzh zz  sincos 332   

 
• xj xe  are called traveling wave solutions 
•  xxcos or  xxsin are called standing wave solutions 

 
• The type of solution chosen depends on the 
problem and the boundary condition. 
 
• For example, for waves confined in the x- 
and y-directions and traveling a long the z-
direction we have: 
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• zj ze  is the positively traveling wave and zj ze  is the negatively traveling wave (for 
time dependency of tje  ) 
 
• To see this note the following 
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• To follow the point pZ at different times we must keep  pz ZtA  cos3 constant   

We must keep the phase pzZt   constant with time  constant pzZt    
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Solution to Wave Equation in Source Free but Lossy 
Medium 
 
• Recall wave equation for lossy medium was given by 
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• Once again Eq. (1)   
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• Once again we propose a solution of the form        zhygxfzyxEx ,,  and use 

separation of variables to show 
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With 2222   zyx constrained equation 

 
• Then        zhygxfzyxEx ,,  is given by 
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• Exponential functions represent attenuated traveling waves and hyperbolic cosine and 
sine represent attenuated standing waves 
 
• Choices for the sign of   
 

• Recall we had     jj  22 . We could have equally defined 

   22  j   j  then we have four choices: 
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zzz eeej     travels along -z-axis, grows along –z-axis 
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• For a positively traveling wave (+z-axis) in a passive media (media with no gain or 
external source of energy), we must have a wave that decays as it moves further in the 
media. Hence, the correct sign for a positively traveling wave in a passive media is 

zjzz
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zzz eee

j



 


 

with our choice of time dependency of tje   
 

Summary 
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• Attenuated traveling waves 
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• Attenuated standing waves 
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Wave Equation in Cylindrical Coordinates 
 
• Previously we solved the wave equation EE


22   in rectangular coordinate 

system for lossless and source free region 
 
• Suppose that boundary condition (the geometrical consideration) of the problem 
requires us to solve the wave equation in cylindrical coordinates.  How do we go about 
this? 
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• In cylindrical coordinates 
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• The use of  ,   and  in cylindrical coordinate in   EEE
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will result in three partial differential equations: 
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with    Ez ,, , E ,or zE  

 
• Note that differential equations for E  and E  are coupled partial differential 

equations while the differential equation for zE  is not coupled 
 
• The solutions of zz EE 22   are most useful in constructing TEz and TMz modes 
(TE and TM with respect to WRT z-direction) boundary value problems and will be 
considered here. 
 
• From zz EE 22  and the expression for  zE    2 we have  
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• Divide both sides by fgh and we get: 

     
 

        2
2

2

2

2

22

2 1111 








 zh
dz

d

zh
g

d

d

gd

df

f
f

d

d

f
  (4) 

Where 2 is a constant 
 

• Since    zh
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d

zh 2
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, which is only a function of z, added to other terms (which are 

functions of   and  ) must equal to a constant ( 2 ) for all values of z , we must 
have 
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• Then, Eq. (4) can be written as 
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  z (constraint equation for wave equation in cylindrical 
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 and 2m are constant.  Above is the classical Bessel Differential Equation. 
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Summary 
 
• The solution to  22   where    zEz z ,,,,   is given by 

     zhgf    where  f ,  g , and  zh are themselves solutions to  
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With constraint equation  
2222 z  
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• Solutions to        zh
dz

zhd
zh

dz

d

zh zz
2

2

2
2

2

21    are given by  

Standing wave ←      zBzAzh zz  sincos 111   
or 
Traveling wave ←   zjzj zz eDeCzh    112  
 

• Solution to        
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gd
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dz

d

g
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21
  are given by  

Standing wave ←       mBmAg sincos 221   
or 
Traveling wave ←    jmjm eDeCg   222  
 

• Solution to 
        0222

2
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  fm

d

df

d

df
 (Bessel Diff. Eq.) is given by 

Traveling wave ←       
)2(

3
)1(

31 mm HBHAf   

or 
Standing wave ←        mm YDJCf 332   

  
)1(

mH Hankel function of the first kind 

 
)2(

mH Hankel function of the second kind 

  mJ Bessel function of the first kind 

 mY Bessel function of the second kind 

 
• The functions     )2()1( ,,,,sin,cos, mmmm

j HHYJe   are all 

valid solutions.  Which one is used in a given problem, 
depends on the problems at hand (particularly the 
boundary conditions). 
 
• As an example consider a metallic cylindrical waveguide.  The solution inside of the 
guide, a 0 is given by: 

       
           zjzj

mm

in

zz eDeCmBmAYDJC

zhgfz


 


 



112233 sincos

,,
 

 
• Note that inside the guide the solution in  must be standing waves, the solution in 
  must be periodic, and solution in z must be traveling waves. 
 

x

y

z

a
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• Furthermore, since  mY is singular at 0 , then  03D  

       zjzj
min

zz eDeCmBmAJC 
    11223 sincos  

 
• If propagating fields outside the guide region ( a ) are allowed then fields will be 
traveling in z and  and periodic in  : 

         zjzj
m

zz eDeCmBmAHBz 
  1122

)2(
3out sincos,,    

Where  
)2(

mH  is positively traveling wave 

 
• Note the following relations for Hankel functions of the first and second kind. 
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Fields, Modes, TEM, Plane wave, and Uniform plane 
waves 
 
• Field is a modification of space-time 
 
• Mode is a particular field configuration for a given boundary value problem.  
Many field configurations can satisfy Maxwell equations (wave equation).  These 
usually are referred to as modes.  Mode is a self-consistent field distribution.  
 
• In TEM mode, E


and H


at every point in space are constrained in a local plane, 

independent of time.  This plane is called equiphase Plane.  In general equiphase 
planes are not parallel at two different points along the trajectory of the wave 
 
• If equiphase planes are parallel (i.e. the space orientation of the planes for TEM mode 

are the same), then we say we have a plane wave.  In other words, the equiphase 
surfaces are parallel planar surfaces 
 
• If in addition to parallel planar equiphase surfaces, the field has equiamplitude 
planar surfaces (the amplitude is the same over each plane), we say we have a 
uniform plane wave.  In this case field is not a function of the coordinates that make 
up equiamplitude and equiphase planes 
 
 
 
 
 
 
 
• We mentioned wave trajectory, what do we mean by wave trajectory 

Phase Front of TEM wave
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• Consider the following plane wave: 

tjrkjeEE 


0 when 0E


is a constant and 


k  

 

• Since 0 D


for source free region 0 E


then   00   tjrkjeEE 
 

Recall   fFFfFf 


 

Then   000   tjrkjtjrkj eEEeE   
, but 00  E


 

000   EkeEkj tjrkj
    

 
• Using 0 H


 we can also show 0Hk


 

 
• It can also be shown (HW) HEk


 and EHk


  

 
Summary: 

HEs

EHk

HEk

Hk

Ek

























0

0

 
 

H


 

k


E

S


RHM y
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Phase fronts of plane wave 
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• Let’s assume there are situations for which and  are both negative    and 

  then 

 

HEs

EHk

HEk

Hk

Ek
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Relation between E


and H


for plane waves 
 

• From Ea
k

HHEakHEk kk


 ˆˆ


  

where kâ  is the unit vector along k


. 

 

• With rrn
c

k 
00  Expression for H


 can be written as 

 EaH k
r

rr


ˆ
0

00




 


 EaEa
EaH kk

k

r

r


 





ˆ

/

ˆ
ˆ

0

0  where 

 /   is the medium intrinsic impedance and we can define 

   377120/ 000   as the free space intrinsic impedance. 

 

• Similar expression for E


 in terms of H


 can be found to be 

HaE k


 ˆ  

 
 
  

E


H


k


S


 
Meta-materials or 
LHM (left-handed 
media) 
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Fresnel Reflection & Transmission Coefficients 
• The case of E


 Perpendicular Polarization: 

 
• The interface is in xy plane 
 
• Plane of incidence is xz plane 
 
• Incident waves are 1,, KHE ii


 

 
• Reflected waves are 1,, KHE rr 


 

 
• Transmitted waves are 2,, KHE tt


 

 
• 1 Angle of incidence, 

  1 Reflection angle 

  2 Transmitted angle 
 
• As stated earlier this geometry is for 

E ( E


perpendicular to the plane 
of incidence). This configuration 
sometimes is called TE or 
polarization 
 
• y

tjrkj
i aeeEE ˆ1

0



 where zzxx akakk ˆˆ 111 


 with 

11111 sinsin  n
c

kk x   and 11111 coscos  n
c

kk z   and 1111 
c

n
c

k  . 

Then  zx aakk ˆcosˆsin 1111  


 and we have  
y

tjzxjk
i aeeEE ˆ111 cossin

0
 


 

 
• Note also that 
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1 cossin1sin 
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c
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• From 
1

ˆ


iki

i

Ea
H


 
  we have     tjzxjk

zxi eeaa
E

H 


111 cossin
11

1

0 ˆsincosˆ 
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•
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x

z2  
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1  
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iE
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 tE
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1  
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•

•
•

1 2 

• For Reflected wave we have  

y
tjrkj

r aeerEE ˆ1
0


  with 11111111  kkkkn

cc
kk 

 
 

 then  since ˆsin ˆcos  1111111 kkakakk xz   xz akakk ˆsinˆcos 11111    

The reflected E


and H


are then 
     yr atjzxjkrEE ˆexpcossinexp 1110  


 

      tjzxjkaa
rE

H zxr 


expcossinexpˆsinˆcos 11111
1

0 


 

 
• Transmitted E


and H


are 

y
tjrkj

t aeetEE ˆ2
0


  

zzxx akakk ˆˆ 222 
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• Note that  2
2

2
2

2
2 kkk zx  
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2
22 xz kkk  
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expcossinexpˆsinˆcos 22222
2
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• We now apply the B.C. at xy  plane and 0z , requiring tangential E


and H


to be 

continuous (two good dielectric) 
 
   
   tangentialtangential

tangentialtangential

tri

tri

HHH

EEE




 

 
• Note that tangential components are along x and y  

xjkxjkxjk etEerEeE 221111 sin
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• The above two equations must be valid for any x  then 

2211

11

sinsin 


kk 

  

 

•  11  is the first Snell’s law of refraction (i.e. the incident & reflected angles are 
equal) 
 
• Second Snell’s Law of Refraction 

22112211212211 sinsinsinsinsinsin  nnn
c

n
c

kkkk xx   

This says that tangential component of the propagation vector across the interface is 
continuous. 
 
• The use of the two Snell’s laws (above) 
will reduce our original equations to the 
following: 

tr 1  (1) 

  2
21

1 cos1
cos 


 t

r


  (2) 

• (1) and (2) can be solved to give 
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• Using  /  and multiplying top and bottom by 2121   we have 
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• Recall 
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• Hence 

zz

zz

kk

kk
r

2112

2112







          (1) 

and similarly 
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2112

122





          (2) 

 
• Note that (1) and (2) are reflection and transmission coefficient (Fresnel field 

coefficients) for TE or E


 polarization. 
 

Two Interface Problem 
• We consider TE or E


 perpendicular 

polarization.  The Fresnel reflection 
coefficients at each interface can be 
written as: 
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• At 0z   
(1) DtArrA 2112   

(2) DrAtC 2112   
 
• At dz  (slab thickness is d ) 
(3) djk zCetAt 2

23
  

(4)   djkdjk zz CerDe 22
23  

(5) jdjk CerCerD z 2
23

2
23

2    where 

(6) dn
c

dk z 222 cos   

 
• Use (5) in (2) then 

11,  22 ,  33 ,  

zk1 zk2  zk3  

x

y

1 2 3 

• 
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22 ,  33 ,  

1 

zk1 zk2  zk3  

y

3 

• 
z

zjk zAe 1  

zjk zrAe 1

zjk zCe 2  

zjk zDe 2

 dzjk zAte  3

z =0 z =d 

x
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(1)   jCerrAtC 2
232112  

(2) A
err

t
C

j2
2321

12

1 
  

 
• Using (2) in jdjk CetCetAt z

2323
2    (Eq. 3-page 55), we have 
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• In a similar manner (HW) we can show 
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• Note if medium 1 and 3 are the same  

then 12
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2321 r
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 . 
Then (1) and (2) can be written as 
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dk z 222 cos   

 
• From the expression for TEr  we see that 
if 02112  rr , then 0TE r ; i.e. there is 
no reflection from the slab.  This is 
called the matched condition. 
 

• Recall 12
1221

1221
21 r

kk

kk
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, then 02112  rr  if  

 zz kk 1221   112221 coscos  n
c

n
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 11122221 coscos  1221 coscos    

 
• What happens to TEt  (transmission coefficient) under matched condition.  
 
 
 

2 
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22 ,  11,
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• Note that with  02112 rr
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 .  Hence under matched condition (

zz kk 1221   ) we have 12112  tt , which then implies 
djkjj zeeettt 2

2112
TE     and 0TE r .  This says that under matched condition the 

slab only inserts a phase on the traveling wave. 
 
• At normal incidence 021  , the matching condition (no reflection from the slab) 

given by 1221 coscos    will simplify to 21   . 
 
• Note that under matched condition with djkj zeet 2TE     we can write 
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ddk
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/

d
vg , where we will later see 

  /  is called the group delay. 
 

• Final Remarks: you should study (self study) topics such as 
critical and Brewster angles. 


