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Auxiliary Vector Potential

Constructing solutions using auxiliary vector potentials

* The objective of EM theory is to find possible EM field configurations (modes) for a
given boundary value problem involving wave propagation, radiation, scattering, or
absorption.

« This can be done by finding the electric and magnetic fields (E and H ) or equally
obtaining the auxiliary vector potentials (AandF )

« In addition to auxiliary vector potentials Aand F there are other possible set. For
example, Hertz vector potentials (IT,and IT, ). Here, we only concentrate on Aand F

* The path for solving EM field configuration is then as follows

Integration
path-1

Vector
potentials

A For
IT,,I1,

Integration

Path-2 Differentiation

Path-2

* Depending on the problem at hand, path-2 maybe easier than path-1

« Traditionally E and B are viewed as physical field quantities, whereas vector
potential ( A) and its scalar counter part (¢, ) are considered as mathematical
constructs. However, there are diverging views on this point!!!

* It is interesting to note that Maxwell himself derived many of his results by using the
concept of vector potential ( A) which he called “electromagnetic momentum.”
However this approach was later criticized by other practitioners such as Hertz and
Heaviside.
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The question of the propagation of, not merely the electric potential ¥ but the
vector potential A ... when brought forward, prove to be one of a metaphysical

nature ... the electric force E and the magnetic force H ... actually represent
the state of the medium everywhere. Heaviside, Philosophical Magazine, 1889.

* Here is what Hertz says about Maxwell’s approach:
I may mention the predominance of the vector potential in [Maxwell’s]
fundamental equations. In the construction of new theory the potential served
as a scaffolding ... it does not appear to me that any ... advantage is attained
by the introduction of the vector potential in the fundamental equations. C.
A. Mead, Collective electrodynamics, 2000.

* Here is different (more modern) point of view:
... the vector potential which appears in quantum mechanics in an explicit form
produces a classical force which depends only on its derivatives. In quantum
mechanics what matters is the interference between nearby paths; it always turns

out that the effects depend only on how much the field A changes from point
to point, and therefore only on the derivatives of A and not on the value

itself. Nevertheless, the vector potential A (together with the scalar potential
¢ that goes with it) appears to give the most direct description of the physics.

This becomes more and more apparent the more deeply we go into the quantum
theory. In the general theory of quantum electrodynamics, one takes the vector
and scalar potentials as the fundamental quantities in a set of equations that

replace the Maxwell equations: E and B are slowly disappearing from the
modern expression of physical laws, they are being replaced by A and ¢.
Feynman, Leighton, and Sands, Lectures on Physics, Vol. 11, 1984.

» Aharonov- Bohm Effects: What happens to an electron as it passes by an infinitely

long solenoid. The E and B are zero outside the solenoid’s core but A = 0. Despite the
fact that there are no EM forces outside of the
solenoid, electron will experience the presence of

A and its phase will be modified. For the figure

shown, A will introduce a phase shift in the
electrons’ wave functions which can be detected by
interfering the electrons.




Equations governing vector potential A

*Since V-B=0= (1)

B,=VxA and (2)

H,=L1vxA 3
7

Subscript A is to remind us that B, and H, are due to vector potential A

« For M =0 (no magnetic source)
VxE, =—jou H ,(Faraday’s Law) (4)

*Use(3)in(4) =

VxEA:—ja),u(EVxAJ: Vx(EA—i-ja)A):O (5)
7

« Since curl of gradient of any scalar is zero, i.e., V x (— Vg, ) =0, then from (5) we
have E, + joA=-Vg, = E, = — joA— V¢, where (6)
¢, =Scalar potential
A = Vector potential

« Equations (6) and (3) are the expression for E and H in terms of Aand ¢,

« We now want to find differential equations governing the behaviors of A and ¢,

= 1 = : .
» We note that from H, =—Vx A, for a homogeneous medium we can write
U

WVxH, =VxVxA= WV xH, =v(V-A)-V?A (7)

« Using Ampere’s Law VxH, = J + jowsE, in (7) we have

13+ josu E, =V(V-A)-VZA (8)
« Previously we found the expression for E,tobe E, = — joA—V¢,. Using this in
(8) we have

(W + josu |- joA-V 4= V(v A)-v?A (©)

« Recall that @®ue = £° then (9) can be written as
VZA+ B2A=V(V- A+ josug, )- ud

« We have defined the curl of Aas B, =V x A, we are at liberty to define the V- A.
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« Inlight of V2A+ B2A=V(V-A+ josud, )- uJ
let us define the divergence of A to be
V- A: _ja)‘c"/u¢e

* Using (2) in (1) we have
VA+ BA=-u]  and

¢e:_ . VA

Jjoeu

« Finally, our expressions for E, and H, in the last page [Egs. (6) and (3)] can be

written as
E,=-Vg, - joh=—Lv(v.A)-jwA
ous
A,=LvxA
U

1)

(2)

(3)
(4)

(5)
(6)

« Now, equations (5) and (6) are expressions for E, and H, in terms of A only

subject to Lorentz gauge.

Equations governing the vector potential F

* Consider a region of space free of charges, i.e. q,,, =0, then

Subscript F is to remind us D, is due to vector potential F

« Recall that Ampere’s Law with J =0, is given by
VxH. = jo ¢ E; :_LVXHF - E,

Jowe
* Use (4) in (3) and we have
1o H, :—EVXIE:VXHF =—joVxF =
Jog &
VX(HF+jW|E)=O

1)
(2)

(3)

(4)

(®)
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« Compare Vx(HF + ja)lf)z 0 with null identity Vx(—Vg, )=0, then it is clear that



H. + joF =-V¢_ =
He =—jo F V4, 1)

« For homogenous media, from E, = _1UxF wehave Vx E, = BEUN I
& &
VxE, = 1v(v.F)+ LveE @)
& &

* From Faraday’s Law we have

VxE. =-M - jouH,, 3)

then substitute (3) in (2)

~M - jouH, =—1v(v- lf)+1v2|f (4)
& &

« But we already found an expression for H_in (1). Use (1) in (4), and we have
BZE+V2FE =M +V(V-F + jousd, ) (5)
Where again f° = o’ ue

« Once again curl of F is defined by D. = -V x F . We are at liberty to choose the
divergence of F . Let

V-F = - joued, = (®)
- —LvE )
joeu

* Using (6), (5) simplifies to
VZF + B2F = —eM (8)

62

« Finally, note that H. [Eq. (1)] and E, [Eq. (3) of last page)] can be written in terms

of F according to

H.=-joF-Vg, =—jo F-—-v(V.F)
s
E ——lvxF
&



Summary

1. Find Afrom V2A+ B*°A=—ud , B% =0 ue
2. Find H,from H, ELY
U
= ~ o= 1 _ _ 1 -
3.Find E,from E, =—jo A- J—V(V-A) or E,=—VxH,
ous Jows

4. Find F from V°F + B°F = —-eM
5. Find E, from E, __luse

&
R . - N
6. Find H. from H. :—Ja)F—J—V(V-F)or H- =——VxE;
wUE jou

7. The total E is given by
E=E,+E, =—joA- ] L v(v.A)-1vxF

e &
or
E—E,+E. =1 VxH,-LvxF

jowe g

8. The total H is given by

A=H,+A, =~VxA-joF -~ V(v.F)
7] woue
or
o _ 1 _ 1 _
H=H,+H. =—VxA-—VxE_
u jou

1)
(2)

3)
(4)
(5)

(6)

(7)

(8)

(9)

(10)
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Solutions for A and F

« Recall that governing differential equations for Aand F are
VZA+ p2A=—1d (1)
V?F + B°F = —aM (2) z

« For source located at (x',y’,z') and observation

point distance R from the source, the solutions to
(1) and (2) are given by

A(x, Y, 2) ,u IHJ X,y z)e—dv (3)

F(x,y,z)= E”-[M (x',y, z’)e

where Jand M have dimensions proportional to 1/m?

-im

av’ 4)

« For J,and M _dimensions proportional to 1/m we have

Ax,y,2)= ””J X,y z)—ds (5)

F(x,y,2)= E”I\ﬁs(x’, Y, z’)e

-im

ds' (6

« For electric and magnetic current densities I, [Ampere] and I [volt] we have

Ax,y,2)= ’u_[ (x,y,7) :Rdl’ 7)

— T v on 8 IR '
F(x,y,z):EIIm(x,y,z)le (8)
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TEM, TE and TM modes

* The transverse electromagnetic field configuration is a mode for which electric and
magnetic field components are transverse to a given direction. This direction often,
but not always, is the path that wave is traveling.

» For TE mode the electric field is transverse to a given direction and for TM mode

the magnetic field is transverse to a given direction. Again, for TE and TM modes the
aforementioned direction is often, but not always, the direction of propagation.

The conditions on auxiliary vector potentials A and F
for TEM, TE and TM modes

« Recall that E and H in terms of Aand F were given by

E:EA+EF=—jw/&—jiv(v-/§)—iwlf (1)
wue &
H=H,+H, =~ VxA-joF-j— v(V-F) ©
7, wue
e Let
A=A (xy.z)a +A(xy.2)a, + A (xy 2)a, 3)
F=F(xy.2)a,+F/(xyz)a,+F(xyz)a, (4)

* Use (3) and (4) in (1) and (2). We get
_ 2 O’A, o2 oF
E:axl—ja)Ax—j : [a ALIH O AzJ 1(55 &

wus| 0x2  oxdy oxor | e

2 82 2 ]
a,| - joA —j L oA, AZ‘V+aAZ —£(£—6F2j+
wue| oxoy oy oyoz | e\ 0z ox
1 (8%A, +82Ay LOPA ) _1(OF, oF,
ous| oxor  oyor  oz* | e\ ox oy

Q)

N

_ja)Az_j




« For H we have

_ 2 O°F 2 A
H:a{-jwa-j (25 uaﬁ}i@_ﬁ}

oue| ox*  oxoy oxor) u\ oy oz
I ’E - OF, ]
a|-joF, —j 1 R, +— +8 E +1(GA—%} + Q)
wue| oxoy oy oyoz ) wu\ oz oX
[ S L o )
al-joF,-j— |05, 05 OF ) 1(0h oA
wps| OX0L  oyor 0z i\ ox oy

« From expression for E and H in terms of Aand F we can see there are at least 3
ways for which we can obtain a TEM mode with respect to z-direction, i.e. TEM®
(HW)

« For example if all the condition listed below are satisfied we have a TEM” mode

A=A, =A,=0,and F, =F, =0, and i;«tO,and i;ffso,and
OX oy

F,=F (x,ye ”+F (x,ye"?,

then
0 0 0 0 0
— i |2 %A, 72 1 E E
E, =" joA, | SR IN IR DT g @
wus| 0Xoz oyoz oz gl ox oy
I SR S
: .1 | 9°F, O°F, O°F, | 1|0A, A
H,=—joF,-j I e E
wug| oxoL  oyor oz u| ox oy
i 1B [ -ig | - s | PR
Ja)Fz+ I:z (X’y)e +Fz (X’y)e - Ja)Fz+Ja)F2_O (3)
ouUE

* Note that from (2) and (3) E, =H, =0.

* We can further calculate the E,, E , H,,and H to be
0 0 0 0

0 —— ’_ZJH —A —
a1 A OA A | 1]0F R

ous| oX*  Oxoy oxor | e| oy oz

=

E = o RV Ryl =B
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0
—— 1 820 A A 1 g& oF. | 10F
=—jCl)Ay—J AX+ y AZ — X _ z == zZ =

ous| oxoy oy’ ayaz gl 0z  OX £ OX

y

E :EQF S(x y)e 18Fe”“ E;+E,
& OX & OX

and it can be shown

H —H*+H——\/:E*+\/:E (HW)
H, , TH, = \/7E+ \/7Ex,(HW)

Where expression for E/ ., E, were given previously (e.g.

=12 g € =2 b

X

Transverse magnetic wave WRT z-direction (TM?)

1)

)

(3)

(4)

(5)

* To ensure that wave is a transverse magnetic (TM) field WRT z-direction, it is
sufficient to ensure the auxiliary vector potential A has only z-component and

F=0.

« For TM?
A=a,A,(xy,z)and F=0

* The field components are then given by

e __i 1 O°A,
” oLE OXO1
2
E, =] 1 0°A,
wue oyoz
2
Ez:_ - (a_2+/82]Az
wue\ 0z
szliAZ
0y
Hy:_iaAZ
M OX
H,=0

(6)

(")

(8)

(9)

(10)

(11)

(12)

« All the field components of the TM? mode can also be expressed in terms of E,
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Transverse electric field WRT z-direction (TE?)

« To have TE? we require F to have only z-componentand A=0, i.e.,

A=0and F=a,F,(xy,2) (1)
* The field components are given by
1 &F,
E =-—=
& oy
e _L0F,
Yog ox
E,=0
2
oot 0°F,
wue OXoz
2
H, = 1 0°F,
wue oyoz
2
Hz :_ji(a_z+ﬁ2JFz
wue\ 0z

« All the field components of the TE? mode can also be expressed in terms of H,

Rectangular metallic wave guide

* Rectangular metallic waveguides are routinely used at RF and microwave
frequencies. Their study is not only motivated by their use as RF/microwave
components, but will help us better understand the concept of mode and guided wave
propagation

* In studying the guided wave structures we are usually interested in parameters such as:
field configurations (modes) that are supported by the structure, the structure cutoff
frequency, guided wavelength, wave impedance, phase constant, attenuation
constant, etc.

* For metallic rectangular waveguide, it can be shown that although TEM field
configuration is the lowest order mode, it does not satisfy the boundary conditions
and as such, the waveguide does not support TEM modes

» However, the TE and TM modes satisfy the required boundary conditions and as
such are supported by the structure
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Transverse Electric Field TE?

» Consider the metallic waveguide of size axbas shown. The waveguide is infinite in
the z-direction

« From our previous discussion we have seen that TE?> modes are obtained if
A=0 and F =4,F,(x,Y,2z) which implied
E

_10F,
X e ay
2
H, =] 1 0°F,
wue OXoz
1 oF
E,=——
Yog ox y
1 o%F 7
H =-j——=
wue oyoz
E, =0 b sl
2
Hz:_jL a_2+162 I:z D
wue\ 0z a
« F must satisfy the vector differential equation z

V2F + B’F =0= V?F,(x,y,2)+ B°F,(x,y,2)= 0=
0°F, 0°F, O°F
+ +
ox*  oy* o1’

L+ B’F, =0

* Note that F, (x, Y, z) is a scalar function that can be written as (using separation of
variables)

F,(xy,2)= f(x)g(y)n(z)

« Also recall that solutions to V?F, + #°F, = Oare either standing waves (sinusoidal)
or traveling waves (exponential with complex argument)

* The particular form (standing wave or traveling wave) is chosen based on the
boundary conditions to be satisfied

* In the case of our metallic waveguide solutions in x and y must be standing waves
and solution in z-direction (guide is infinite in the z-direction) must be traveling wave

* Hence
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F,(x,y,2)= f(x)g(y)n(z)
= [C, cos(B,%)+ D, sin(B.x))-[C, Cos(ﬂy y)+ D, sin(,Byy)]- [Ase—jﬂzz N Bse+jﬁzz]
with

BE+B, +B =B =wue

« Recall that for e!** time dependency, e s a positively traveling wave (wave

travels in positive z-direction) and e*** is a negatively traveling wave (wave travels in
negative z-direction)

« If source is located such that only positively traveling wave is present, then
B =0=B,=0

* If source is located such that only negatively traveling wave is present, then
Ae " =0= A =0 y

* If both positively and negatively traveling waves are y=Db
present (a waveguide terminated on a load that is not

matched), then both A.e +*and B,e"”:* must be included

* Here, for simplicity, we assume that only positive traveling x=0
wave exist = B; =0

z
*The F,is then given by

F (X' Y, Z) = [Cl COS(ﬂXX)+ D, sin(ﬂxx)]- [Cz Cos(ﬂy y)+ D, Sin(ﬂyy)]Age”'ﬁzz 1)

» We impose the boundary conditions on the top, bottom, left and right walls of the
metallic waveguide, assuming a perfect electric conductor (PEC) boundary
condition, i.e. E and H tangential are zero on the walls

* The boundary conditions are:

E,(0<x<ay=0,z)=E,(0<x<a,y=b,z)=0, Bottom and top walls for E, (2)
E,(0<x<a,y=0,2)=E,(0<x<a,y=b,z)=0, Bottom and top walls for E, (3)
E,(x=00<y<b,z)=E (x=a0<y<b,z)=0, Leftand right walls for E,  (4)
E,(x=00<y<b,z)=E,(x=a,0<y<b,z)=0, Left and right walls for E,  (5)

z

y(

(
* Note that the boundary conditions (3) and (5) are not independent and they
represent the same boundary conditions as (2) and (4).

* The necessary and sufficient conditions are to satisfy (2) OR (3) (E, and E, at
bottom and top walls) AND (4) or (5) (E, and E, at the left and right walls)
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« Furthermore, note that for TE* modes by definition E, is zero. This means that the
necessary and sufficient B.C.’s for TE” are (2) and (4) of the last page (E, at the
bottom and the top and E, at the left and right walls)

E(0<x<ay=0,z)=E (0<x<ay=hz)=0
E,(x=00<y<b,z)=E, (x=a0<y<b,z)=0

» Recall that the vector potential for TE? was given as [Eq. (1), last page]
F,'(x,y,2)=[C, cos(B,x)+ D;sin(8,x)]-[C, cos(8,y)+ D, sin(4, y )| #*. We then have

E, = —% 6;{ =-A, %[C1 cos(8,x)+ D, sin(B,x)]- |- C, sin(8,y)+ D, cos(ﬂyy)]Ase“"’zZ

«From E,(0<x<a,y=0,z)=0=D, =0

«From E,(0<x<a,y=bz)=0=sin(8,b)=0= }:

p,o=nz n=0123 orequally, y=>b

B, = ”T” n=0123 & H
y:OX:O

* B, is sometimes referred to as eigenvalue

* If we use our newly found results, we have

F,"(x,y,z)=][C, cos(8, x)+ D,sin(s,x)IC, cos[nT” y]ASe—jﬁzz

* The Ey can be found from

10F, p,
Ey =
& OX &

[~ C,sin(p x)+ D, cos(8,x)[C, cos(nT” yjABe—jﬂzx

* Boundary conditions for E, at left wall is
E,(x=00<y<b,z)=0=D, =0

* Boundary condition for E at right wall is
E,(x=a,0<y<b,z)=0= sin(ga)=0=
p.a=mz m=0123orequally

L. =" m=0123
a
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« Putting it all together, the vector potential F,"is given by
)G o e o
a a

m=01,2,3
with butm=n=0
n=01,2,3

A, isaconstant= C,C,A,

Propagation constant (wave numbers) and wavelengths
in thex,y and z direction

 From our previous discussion it is clear that propagation constant (or wave number)
along x (,)and along y (8, )can be written as

mz _ 27 2a

- = =——"m=012 1

p=tE=Toa=2 @)

ﬁy:%:i_”jzyzé;nzo,l,zandwithm:n¢0, (2)
n

y
where we have also defined the wavelength along x to be 4, and along y to be 4,

« Recall that B,° + B,° + B,° = B* = @’ ue or equally well:
12 + 12 + 12 :i2 where A is the wavelength in the medium with ¢and u
A5 AT AT A

(material inside the guide)

* From (1) and (2) note that S,and S, are discrete (one can say they are quantized),
where as £, is a continuous parameter.

* Note that in principle there are infinite numbers of possible g,and g, (eigenvalues)

hence there are infinite number of TE” modes that satisfy the wave equation and the
given boundary condition.

m n
» From f8, =—"and B, =?ﬂand BL+B,+ B, =B =w’us we can see that
a

mz ) (nz) 2 a2 , , (mz\ (nz\'
() (5] vor-m= 0= () -0

where by definition: S, =cutoff propagation constant or cutoff wave number
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b

2 2
* Note that g, = /8|, = a)\/ﬁ‘ﬂ L= o, e = 2;#0\/#_:\/(%} J{n_ﬂj _

* Hence, the cutoff frequency ( f,) is given by
(fo ) = : (m”jz+(n—”jz m=0La o
¢/mn 27+ E a b n=0123

* From the expression g, = ,B| 5o We Can see why f.is called the cutoff propagation

constant. For this wave number, £, =0 and the wave no longer travels along the z-
direction.

» The above can be more clearly seen from
2
B, =B —(ﬂxz +ﬁy2):ﬁ2 _HM) +(ngrj ] B —p.%. Clearly for
a
p=pB=p =0

« The field components for TE,,' are now given by

E><+ = Amn %Cos(ﬂxx)sm(ﬂy y)-:"_jﬂzz
E," =-A, %sin(,b’xx)cos(,b’yy)ejﬂzZ

E," =0
H'=A_, PPy D2 sin(, x) cos(ﬂ yp i
ous
H, =A_ Pp. cos(,b’x sm(,B y e
WUE
_JAnn i

* To appreciate the importance of the cutoff conditions consider the following:

=+ 1—(%] =+ 1—(%] for >p, < f>1
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«(B,)., =0 for f=p. < f =1,

= 2 =4]j &

ﬂ
==j ,/ —1 +Jﬂ{% for B.>p< f > f

* If we only consider the positively traveling wave we must choose the sign in front
of the square root appropriately, i.e.

(IBz)mn =ﬁ\/1—(%j =,3\/1—(%j =ﬂ\/1[%j for >4 < f>f

for g, =1.=0

——Jﬂ,/ - —1,31/ -ip ]/ -1 for g, >pe f > f

« Since electric and magnetic fields are proportional to e e then
2
(]
el?e 1 = g% =1e' represents a standing wave for f, = f
2 f 2
n)[%) ] _4 B }
f . f
eja)t —e

fo>f

e el represents a propagating wave for f > f_

e!” represents an attenuated (evanescent) wave for



Ex(x,y,z,t):O

TE?10 Field components and Field Patterns

Efx,yzi)= 'f-'i-l ( JH.;. 8in ( x) gin (et — fiz),

Eix, vz l)= l}
Hlx y,z )= —
Hx, y.z0) =0,

H.x, v,z

i=H sz(

B
h?

( )Husln(; )5111[ur—.l'f}

D-I"4

) cos (mt — fiz),
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Electric field lines

Magnet o field lines
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