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Auxiliary Vector Potential 
 

Constructing solutions using auxiliary vector potentials 
 
• The objective of EM theory is to find possible EM field configurations (modes) for a 
given boundary value problem involving wave propagation, radiation, scattering, or 
absorption. 
 
• This can be done by finding the electric and magnetic fields ( E


and H


) or equally 

obtaining the auxiliary vector potentials ( A


and F


) 
 
• In addition to auxiliary vector potentials A


and F


there are other possible set.  For 

example, Hertz vector potentials ( e and h ). Here, we only concentrate on A


and F


 

 
• The path for solving EM field configuration is then as follows 
 

 
 
• Depending on the problem at hand, path-2 maybe easier than path-1 
 

• Traditionally E


and B


are viewed as physical field quantities, whereas vector 
potential ( ) and its scalar counter part ( e ) are considered as mathematical 

constructs.  However, there are diverging views on this point!!! 
 
• It is interesting to note that Maxwell himself derived many of his results by using the 
concept of vector potential ( ) which he called “electromagnetic momentum.”  
However this approach was later criticized by other practitioners such as Hertz and 
Heaviside. 
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The question of the propagation of, not merely the electric potential   but the 
vector potential  ... when brought forward, prove to be one of a metaphysical 
nature ... the electric force E


 and the magnetic force H


 ... actually represent 

the state of the medium everywhere.  Heaviside, Philosophical Magazine, 1889. 
 
• Here is what Hertz says about Maxwell’s approach: 

I may mention the predominance of the vector potential in [Maxwell’s] 
fundamental equations.  In the construction of new theory the potential served 
as a scaffolding ... it does not appear to me that any ... advantage is attained 
by the introduction of the vector potential in the fundamental equations. C. 
A. Mead, Collective electrodynamics, 2000.  

 
• Here is different (more modern) point of view: 

... the vector potential which appears in quantum mechanics in an explicit form 
produces a classical force which depends only on its derivatives.  In quantum 
mechanics what matters is the interference between nearby paths; it always turns 
out that the effects depend only on how much the field  changes from point 
to point, and therefore only on the derivatives of  and not on the value 
itself.  Nevertheless, the vector potential  (together with the scalar potential 

 that goes with it) appears to give the most direct description of the physics.  
This becomes more and more apparent the more deeply we go into the quantum 
theory.  In the general theory of quantum electrodynamics, one takes the vector 
and scalar potentials as the fundamental quantities in a set of equations that 

replace the Maxwell equations: E


 and B


 are slowly disappearing from the 
modern expression of physical laws, they are being replaced by  and .  
Feynman, Leighton, and Sands, Lectures on Physics, Vol. II, 1984. 

 
• Aharonov- Bohm Effects: What happens to an electron as it passes by an infinitely 

long solenoid. The E


 and B


 are zero outside the solenoid’s core but 0A


. Despite the 
fact that there are no EM forces outside of the 
solenoid, electron will experience the presence of 

A


 and its phase will be modified.  For the figure 

shown, A


 will introduce a phase shift in the 
electrons’ wave functions which can be detected by 
interfering the electrons. 
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Equations governing vector potential A


 
 
• Since  0B


         (1) 

ABA


  and         (2) 

AH A





1

         (3) 

Subscript A  is to remind us that AB


 and AH


 are due to vector potential A  
 
• For 0M


 (no magnetic source) 

AA HjE


 (Faraday’s Law)       (4) 
 
• Use (3) in (4)   









 AjEA




 1

   0 AjEA


      (5) 

 
• Since curl of gradient of any scalar is zero, i.e.,   0 e , then from (5) we 

have  eA AjE 


eA AjE  


 where     (6) 

e Scalar potential 

A


Vector potential 
 
• Equations (6) and (3) are the expression for E


and H


in terms of A


and e  

 
• We now want to find differential equations governing the behaviors of A


 and e  

• We note that from AH A





1

, for a homogeneous medium we can write  

 AH A


    AAH A


2     (7) 

 
• Using Ampere’s Law AA EjJH


  in (7) we have 

  AAEjJ A


2         (8) 

 
• Previously we found the expression for AE


to be eA AjE  


.  Using this in 

(8) we have 
    AAAjjJ e


2        (9) 

 
• Recall that 22    then (9) can be written as 

 

 
• We have defined the curl of A


as ABA


 , we are at liberty to define the A


 . 

  JjAAA e


  22
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• In light of      (1) 

let us define the divergence of A


 to be 

ejA 


         (2)  

 
• Using (2) in (1) we have 

JAA


  22  and         (3) 

         (4) 

 
• Finally, our expressions for AE


 and AH


 in the last page [Eqs. (6) and (3)] can be 

written as 

      (5) 

AH A





1

          (6) 

 
• Now, equations (5) and (6) are expressions for AE


 and AH


 in terms of A


 only 

subject to Lorentz gauge. 
 
 

Equations governing the vector potential  
 
• Consider a region of space free of charges, i.e. 0ave q , then 

 0D


          (1) 
         (2) 

         (3) 

Subscript F is to remind us FD


 is due to vector potential F


 
 
• Recall that Ampere’s Law with 0J


, is given by 

FFFF EH
j

EjH





 1
      (4) 

• Use (4) in (3) and we have 

 FjHFH
j FF





11

 

  0 FjH F


          (5) 

 
• Compare   0 FjH F


  with null identity   0 m , then it is clear that  

  JjAAA e


  22

A
je





 1

  AjA
j

AjE eA





 




F


 FDF



FEF





1
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mF FjH  


         (1) 

 

• For homogenous media, from  we have  FEF




1

 

  FFEF


211




       (2) 

 
• From Faraday’s Law we have  

FF HjME


 ,        (3) 
then substitute (3) in (2) 

  FFHjM F


211




       (4) 

 
• But we already found an expression for FH


in (1).  Use (1) in (4), and we have  

 mjFMFF  


22       (5) 

Where again  22   
 
• Once again curl of F


is defined by FDF


 .  We are at liberty to choose the 

divergence of F


.  Let  
 mjF 


         (6) 

F
jm








 1

         (7) 

 
• Using (6), (5) simplifies to  

MFF


  22          (8) 
 
• Finally, note that  [Eq. (1)] and FE


 [Eq. (3) of last page)] can be written in terms 

of F


 according to 

 F
j

FjFjH mF





  

FEF





1

 

 

 mF FjH 


FEF





1

FH
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Summary 
 
1. Find A


from ,      (1) 

2. Find AH


from        (2) 

3. Find AE


from  or AA H
j

E




1

  (3) 

4. Find F


from        (4) 

5. Find FE


from FEF





1

       (5) 

6. Find FH


from  FjFjH F





 1

 or FF E
j

H








1
  (6) 

7. The total E


is given by  

  FAjAjEEE FA





 11

     (7) 

or 

      (8) 

8. The total H


is given by  

 FjFjAHHH FA








11

     (9) 

or 

      (10) 

 
  

JAA  


22  22 

AH A





1

 AjAjEA





 1

MFF


  22

FH
j

EEE AFA





11

FFA E
j

AHHH




11



 64

Solutions for A


 and F


 
 
• Recall that governing differential equations for A


and F


are 

 
JAA


  22     (1) 

    (2) 
 
• For source located at  zyx  ,,  and observation 
point distance R from the source, the solutions to 
(1) and (2) are given by 

    vd
R

e
zyxJzyxA

Rj

v












,,
4

,,


 (3) 

    vd
R

e
zyxMzyxF

Rj

v












,,
4

,,


 (4) 

where J


and M


have dimensions proportional to 1/m2 
 
• For sJ


and sM


dimensions proportional to 1/m we have 

   





s

Rj

s sd
R

e
zyxJzyxA






,,
4

,,


 (5) 

   





s

Rj

s sd
R

e
zyxMzyxF






,,
4

,,


 (6) 

 
• For electric and magnetic current densities eI


 [Ampere] and mI


 [volt] we have 

    


c

Rj

e ld
R

e
zyxIzyxA






,,
4

,,


 (7) 

    


c

Rj

m ld
R

e
zyxIzyxF






,,
4

,,


 (8) 

 

MFF


  22

x

y

z

r


r 

R


 zyx ,,  

 zyx  ,,  
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TEM, TE and TM modes 
 
• The transverse electromagnetic field configuration is a mode for which electric and 
magnetic field components are transverse to a given direction.  This direction often, 
but not always, is the path that wave is traveling. 
 
• For TE mode the electric field is transverse to a given direction and for TM mode 
the magnetic field is transverse to a given direction.  Again, for TE and TM modes the 
aforementioned direction is often, but not always, the direction of propagation. 
 

The conditions on auxiliary vector potentials A


 and F


 
for TEM, TE and TM modes 
 
• Recall that E


and H


in terms of A


and F


were given by 

     (1) 

 FjFjAHHH FA








11

     (2) 

 
• Let 

      zzyyxx azyxAazyxAazyxAA


,,,,,,       (3) 

      zzyyxx azyxFazyxFazyxFF


,,,,,,       (4) 

 
• Use (3) and (4) in (1) and (2).  We get 
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• For H


we have 
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• From expression for E


and H


in terms of A


and F


 we can see there are at least 3 

ways for which we can obtain a TEM mode with respect to z-direction, i.e. TEMz 
(HW) 
 
• For example if all the condition listed below are satisfied we have a TEMz mode 

0 zyx AAA , and 0 yx FF , and 0


x

, and 0


y

, and 

    zj
z

zj
zz eyxFeyxFF    ,, , 

then 
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• Note that from (2) and (3) 0 zz HE . 
 
• We can further calculate the xE , yE , xH , and yH  to be 
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zy EEeF
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1

,
1

     (2) 

and it can be shown 

  yyxxx EEHHH






 (HW)      (3) 

  xxyyy EEHHH






, (HW)      (4) 

Where expression for 
xxyy EEEE ,,,  were given previously (e.g. 

  zj
zx eyxF

y
E 







 ,
1

and   zj
zx eyxF

y
E 







 ,
1

)    (5) 

 

Transverse magnetic wave WRT z-direction (TMz) 
 
• To ensure that wave is a transverse magnetic (TM) field WRT z-direction, it is 
sufficient to ensure the auxiliary vector potential A


 has only z-component and 

0F


. 
 
• For TMz 

 zyxAaA zz ,,


  and 0F


        (6) 
 
• The field components are then given by  

zx

A
jE z

x 



21


         (7) 

zy

A
jE z

y 



21


         (8) 

zz A
z

jE 












 2
2

21 


        (9) 

zx A
y

H





1

          (10) 

x

A
H z

y 




1

         (11) 

0zH           (12) 
 
• All the field components of the TMz mode can also be expressed in terms of zE   
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Transverse electric field WRT z-direction (TEz)  
 
• To have TEz we require F


to have only z-component and 0A


, i.e.,  

0A


 and  zyxFaF zz ,,


   (1) 
 
• The field components are given by 
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F
E z
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• All the field components of the TEz mode can also be expressed in terms of zH  
 

Rectangular metallic wave guide 
 
• Rectangular metallic waveguides are routinely used at RF and microwave 
frequencies. Their study is not only motivated by their use as RF/microwave 
components, but will help us better understand the concept of mode and guided wave 
propagation 
 
• In studying the guided wave structures we are usually interested in parameters such as: 
field configurations (modes) that are supported by the structure, the structure cutoff 
frequency, guided wavelength, wave impedance, phase constant, attenuation 
constant, etc. 
 
• For metallic rectangular waveguide, it can be shown that although TEM field 
configuration is the lowest order mode, it does not satisfy the boundary conditions 
and as such, the waveguide does not support TEM modes 
 
• However, the TE and TM modes satisfy the required boundary conditions and as 
such are supported by the structure 
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Transverse Electric Field TEz 
 
• Consider the metallic waveguide of size ba as shown. The waveguide is infinite in 
the z-direction 
 
• From our previous discussion we have seen that TEz modes are obtained if 

0A


 and  zyxFaF zz ,,ˆ


 which implied 

y

F
E z

x 




1
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F
jH z
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• F


must satisfy the vector differential equation 
 022 FF


      0,,,, 22 zyxFzyxF zz   

02
2

2

2

2

2

2













z
zzz F

z

F

y

F

x

F
  

 
• Note that  zyxFz ,,  is a scalar function that can be written as (using separation of 
variables)  

       zhygxfzyxFz ,,  
 
• Also recall that solutions to 022  zz FF  are either standing waves (sinusoidal) 
or traveling waves (exponential with complex argument) 
 
• The particular form (standing wave or traveling wave) is chosen based on the 
boundary conditions to be satisfied 
 
• In the case of our metallic waveguide solutions in x and y must be standing waves 
and solution in z-direction (guide is infinite in the z-direction) must be traveling wave 
 
 
 
• Hence  
 

x

y  

z

a

b  ,
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           zjzj

yyxz

z

zz eBeAyDyCxDxC

zhygxfzyxF
  



332211 sincossincos

,,
 

with 

 22222  zyx  

 
• Recall that for tje  time dependency, zj ze  is a positively traveling wave (wave 
travels in positive z-direction) and zj ze   is a negatively traveling wave (wave travels in 
negative z-direction) 
 
• If source is located such that only positively traveling wave is present, then 

00 33  BeB zj z  

 
• If source is located such that only negatively traveling wave is present, then 

00 33  AeA zj z  

 
• If both positively and negatively traveling waves are 
present (a waveguide terminated on a load that is not 
matched), then both zj zeA 

3 and zj zeB 
3 must be included 

 
• Here, for simplicity, we assume that only positive traveling 
wave exist 03  B  

 
•The zF is then given by 

 
(1) 

 
• We impose the boundary conditions on the top, bottom, left and right walls of the 
metallic waveguide, assuming a perfect electric conductor (PEC) boundary 
condition, i.e. E


and H


tangential are zero on the walls 

 
• The boundary conditions are: 

    0,,0,0,0  zbyaxEzyaxE xx , Bottom and top walls for xE  (2) 

    0,,0,0,0  zbyaxEzyaxE zz , Bottom and top walls for zE  (3) 

    0,0,,0,0  zbyaxEzbyxE yy , Left and right walls for yE  (4) 

    0,0,,0,0  zbyaxEzbyxE zz , Left and right walls for zE  (5) 
 
• Note that the boundary conditions (3) and (5) are not independent and they 
represent the same boundary conditions as (2) and (4). 
 
• The necessary and sufficient conditions are to satisfy (2) OR (3) ( xE  and zE  at 

bottom and top walls) AND (4) or (5) ( yE  and zE  at the left and right walls) 

 

            zj
yyxxz

zeAyDyCxDxCzyxF    32211 sincossincos,,

x

y  

z

ax 

by 

 ,

0y
0x  
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• Furthermore, note that for TEz modes by definition zE is zero. This means that the 

necessary and sufficient B.C.’s for TEz are (2) and (4) of the last page ( xE  at the 

bottom and the top and yE  at the left and right walls) 

 
    0,,0,0,0  zbyaxEzyaxE xx  

    0,0,,0,0  zbyaxEzbyxE yy  

 
• Recall that the vector potential for TEz was given as [Eq. (1), last page] 

            zj
yyxxz

zeAyDyCxDxCzyxF    32211 sincossincos,, .  We then have 

          zj
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zeAyDyCxDxCA
y
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• From  

 
• From      0sin0,,0 bzbyaxE yx   

 nby   3,2,1,0n  or equally, 

b

n
y

  3,2,1,0n  

 
• y  is sometimes referred to as eigenvalue 

 
• If we use our newly found results, we have 

       zj
xxz

zeAy
b

n
CxDxCzyxF   






 3211 cossincos,,  

 
• The yE can be found from 

     xj
xx

xz
y

zeAy
b

n
CxDxC
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F
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 3211 coscossin
1

 

 
• Boundary conditions for yE at left wall is  

  00,0,0 1  DzbyxEy  

 
• Boundary condition for yE at right wall is  

   0,0, zbyaxEy     0sin ax  

 max  3,2,1,0m or equally 

a

m
x

  3,2,1,0m  
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• Putting it all together, the vector potential 
zF is given by 

  zj
mn

zj
z

zz ey
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n
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m
CzyxF    





























 coscoscoscos,, 321  

with 
3,2,1,0

3,2,1,0




n

m
but 0 nm  

mnA  is a constant = 321 ACC  

 

Propagation constant (wave numbers) and wavelengths 
in the x , y  and z  direction 
 
• From our previous discussion it is clear that propagation constant (or wave number) 
along x  x and along y  y can be written as 

 

2,1,0 ;
22

 m
m

a

a

m
x

x
x 


       (1) 

2,1,0 ;
22

 n
n

b

b

n
y

y
y 


  and with 0 nm ,    (2) 

where we have also defined the wavelength along x  to be x  and along y  to be y  

 

• Recall that  22222  zyx or equally well: 

2222

1111




zyx

 where   is the wavelength in the medium with  and 

(material inside the guide) 
 
• From (1) and (2) note that x and y are discrete (one can say they are quantized), 

where as z is a continuous parameter. 
 
• Note that in principle there are infinite numbers of possible x and y (eigenvalues) 

hence there are infinite number of TEz modes that satisfy the wave equation and the 
given boundary condition. 
 

• From 
a

m
x

  and 
b

n
y

  and  22222  zyx  we can see that  
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where by definition: c cutoff propagation constant or cutoff wave number 
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• Note that 
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• Hence, the cutoff frequency ( cf ) is given by  

 
22

2

1















b

n

a

m
f mnc




 0
3,2,1,0

3,2,1,0









nm
n

m
 

 
• From the expression 

0


z
c 

 we can see why c is called the cutoff propagation 

constant.  For this wave number, 0z  and the wave no longer travels along the z-
direction. 
 
• The above can be more clearly seen from  
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• The field components for TEmn

+z are now given by  
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• To appreciate the importance of the cutoff conditions consider the following: 
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•   0mnz      for cc ff    
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• If we only consider the positively traveling wave we must choose the sign in front 
of the square root appropriately, i.e. 
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• Since electric and magnetic fields are proportional to tjzj ee z  then 

tj
z

f

f
j

ee
c




2

1 









 represents a propagating wave for cff   
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TEz
10 Field components and Field Patterns 
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