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The propagation of electromagnetic wave packets 
(pulses): Group Delay 
 
• In discussing wave propagation in a medium we may describe the phenomenon in 
terms of velocity or equally well in terms of the time required for the propagation.  
For example, we will see that the peak of a well-behaved EM wave packet (pulse) 
propagating in a medium of index  n , moves with group velocity gv


.  We can also 

formulate this problem in terms of the time it takes for the packet to travel a given 
distance through the medium.  This time is referred to as the group delay. 
 
• Let us consider the following.  A medium characterized by its transmission function 
 T  is excited by an incident pulse      ttftf e 0cos  , where the output of the 

system is  tg . 

 
 
•  tf e  is the envelope of the modulated incident wave packet  tf , and 0  is the 

frequency of modulation. 
 
• In the language of the linear system theory,  T  is the network function or the 
system response. 
 
 

 

 

 tT  
 tg   tf

     
  

integraln convolutio






  dtTftg  

      jeTT   
 G   F  

      TFG   

       )(1 tTeTT j  F  
 tg   tf
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• For a well-behaved wave packet and a medium that is not too dispersive (or equally 
for narrow bandwidth wave packet) the relation between  tf  and  tg  is shown 
below 
 

 
 
• In the following we shall see that the output [  tg ] is indeed a delayed version of the 

input [  tfe ] by an amount given by the group delay ( g ), and we will obtain an 

expression for the group delay. 
 
• For the input      ttftf e 0cos   we assume ef (the envelope) is narrowband, i.e. 

  0eF  for  0  and 0  

 
• Graphically, the condition   0eF for  0 is shown here  

 
 
  

0  0  0  

  



 eF  
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• We also assume       jeTT   has the following properties: 

 
 




origionabout  odd is 

origionabout even  is 


T

 
 
• For symmetric systems such as above, the network function  T  can be expressed 
as the sum of two terms: 
 1T for positive frequencies 

 2T for negative frequencies 
 
•       21 TTT   

      UTT 1  

       UTT2  
 
• U is the step function (Heaviside function) 

 








0for 0

0for 1




U  

and 

 








0for 0

0for 1




U  

 
• Since inverse Fourier transform of  T , i.e.,   T1F , (the impulse response) 

must be real, then we can show      TT  which can be used to show 

     21 TT  (HW) 
 
• But what is  1T ? let us now find an expression for :       jeAT 1  
 
• At the vicinity of 0 , we approximate  A  by   0AA   and    by: 

 T

0  

 




0  



 U  



 U  
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     

   




















0
0

00

00

0

0
















d

d

d

d

 

 
• Let us define  

 
0

0


 p  as the phase delay and  

0



d

d
g  as the group delay, 

then, 

         












 gpd

d 







000

0

00

0

 

 
• Hence to second order approximation 
           gpgp jjjj eeAeAeAT  0000

001
   

 
• Knowing  1T  from above,  2T  can be evaluated from      21 TT  to be 
(HW) 
    gp jj eeAT  00

02
  

 
• Now we are ready to calculate the output from linear system theory 

 
 
       TFG             210cos TTttfG e F  where F  means the 

Fourier transform  
 

• From Fourier transform we know         
22

cos 00
0

 



 ee

e

FF
ttfF , where 

    tfF ee F  

 
• Then  G  can be written as  

          

               
2222

22

20102010

21
00





TFTFTFTF

TT
FF

G

eeee

ee

















 





 

 

 T  
 G   F  
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• Note that from our condition on  eF , i.e.   0eF  for  0  with 

0 , we can conclude that   00 eF , hence     010   TFe . 

 

• Similar reasoning implies that 
   

0
2

20 
  TFe  

 
• Then 

         
22

1020  TFTF
g ee 




  

 
• In the above we substitute the expressions for  1T and  2T  from the last page, 
and we have 

          gpgp jjejje eeA
F

eeA
F

G   0000

0
0

0
0

22
 




  

 
• With some careful thinking and a table of Fourier transforms we can see that  
        )(cos 0

1
pge ttfGtg   F  

 
• g is the time by which the envelope of the wave packet is delayed (or advanced) 

and is a measure of the group velocity. 
 
• p is the time by which the phase of elementary excitations (harmonics) are delayed 

(or advanced) and is a measure of the phase velocity. 
 

• This means that the wave packet moves with group velocity 
g

g

L
v


 , where L  is 

the physical thickness of the medium characterized by  T  
 
• This means that the elementary excitations (harmonics) moves with phase velocity 

p
p

L
v


 , where L  is the physical thickness of the medium characterized by  T  

0  



0
0  

0  
  

 eF  
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Group velocity and group delay in the matched medium 
case 
 
• Recall that transmission coefficient for a slab was given by  

  



j

j

er

ett
T

22
21

2112TE

1




, where Ln
c

Lk z 222 cos   with 

TET Field transmission coefficient, and 

12
1221

1221
21 r

kk

kk
r

zz

zz 







 

zz

z

kk

k
t

2112

12
12

2





  

zz

z

kk

k
t

1221

21
21

2





  

 
• Under the matched matching:  01221 rr 121121221  ttkk zz   

then we have    jeT TE .  Therefore, transmission only introduces a phase term 
 
• let us calculate the group delay 

  












g

z
zg V

Lk
LLk


 2

2
gz

g

L

k
V









2

. 

This is sometimes called generalized group velocity 
 

• Note that in general  
 

  




 


 j

j

j

eT
er

ett
T

22
21

2112

1
.  Since ,,, 212112 rtt are all 

complex then 

   


 












LLL
v

g
g

phase Trans. 
. 

Above expression also takes the interface effects (mismatch effects) into account. 
 
  

I I II 

L  
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Free Particles (free electrons and photons) 
 
• In the following we will derive some of the general properties of the waves, or more 
specifically wave packets (pulses or wave functions), which are applicable to both 
electromagnetic and also electronic waves.  We begin our study be considering free 
particles (free electrons or photons). 
 
Electron Case: 
• Quantum mechanics Postulates that the state of a particle (all you need to know about 
a particle) at time t and position r


is determined by the wave function  tr ,

 , where 

 tr ,
 is called the probability amplitude.  In other words, the probability of finding 

the particle, at time t , in a volume element dxdydzdr 3 situated at the point r


is 
given by 

    32
,, drtrCtrd
   

 
• Quantum mechanics postulates that the time evolution of the wave function  tr ,

  is 
governed by Schrödinger equation 

       trrVtr
m

tr
t

i ,,
2

, 2
2 

 






 

where  rV  is the time independent potential. 
 
• In Schrödinger equation let      trtr    ,  then 

           


 trrVrt
mdt

d
ri  

 2
2

2
     (1) 

 
 

      




  













  constant position offunction aonly 

2
2

 constant time
offunction  aonly

1

2










rVr
rmdt

td

t

i
 

 
      ti

dt

td

dt

td

t

i 





 

       
 





rin 

 absorbed have we

,



 
A

tititi ererAtrAet    

 
• Then RHS of (1) can be written as 

         rErrrVr
m




  
 2

2

2
 

where E  is the energy.  This is called Schrödinger equation in the stationary 
form. 
 
•     tiertr   

, is called the stationary solution of the Schrödinger equation 
 



 

 

82

• In stationary state form, the probability density     22
, rtr

   is time 

independent 
 
• A stationary state is a state with well defined energy E  
 
• In classical mechanics if potential is time independent, then total energy is a 
constant of the motion. In quantum mechanics, this means that a well determined 
energy state exists. 
 
• Now, let us focus on the stationary form of the Schrödinger equation. 

       rErrVr
m

   2
2

2
.  Suppose the solution to this be written as 

  rki eAer
  , then it can be shown that  

   EVk
m e

2
2

2


VE

m

ke 
2

22
 or 

 VE
m

ke 
2

2 2


  

 
• If over a region of space 0V  or constant, i.e. 0 VF  (no force), then we say 
the particle is free and we have 

m

k
E e

2

22
  (free electron dispersion relation) 

 
• Using Broglie relation kP  , where now k  must be replaced by ek , we can write 

m

P

m

k
E e

22

222




 which is our classical result for free electron 

 
• Also using Einstein relation E , for free electron we can write   in terms of 

ek  according to 

m

ke

2

2
  

• Finally, note that for the stationary state   tirki eeAtr 


, , the probability density 

is given by   22
, Atr  

 which is a constant 

 
• Hence for the plane wave   tirki eeAtr 


, the probability of finding the electron 

at any point in space is the same, however this cannot represent a physical situation. 
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Photon Case: 
• The dynamical wave equation governing the behavior of electromagnetic waves 
(photons) in a simple medium in absence of charges and conduction current is the 
Helmholtz’s wave equation given by 

    0,,
2

2
2 




 tr
t

tr


EE  , 

where  tr ,


E  is the electric filed. 
 
• In comparing the wave equations for electrons and photons note the order of the time 
derivatives and the vector nature of the electric field. 
 
• The stationary form of the Helmholtz’s wave equation is given by 

    022  rErE
  , where   is the optical frequency 

 

• Suppose the solution to this be written as rki peEE
  0 , then it can be shown that 

 022 pk   
 n

c
k p   

 
• The dispersion relation for free photons is then given by  

 


 n
c

k p  or equally  p

p

kn

ck
  

 
•  

 
 
 
 
  

ek  

E

Free electron 
dispersion 
(parabolic) 

pk  

Free photon 
dispersion 
(linear)


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Principle of Superposition 
• The discussion to follow is applicable to both electrons and photons, i.e. the 
Schrödinger or Helmholtz’s wave equations in the stationary state.  We take  tr ,

  
to be either the electronic wave function or any components of the electric or 
magnetic fields.  We also represent the frequencies (electron or EM waves) with  , 
and k  is the corresponding wave propagation for electrons ( ek ) or photons ( pk ). 

Clearly, the main difference between the two cases is the parabolic or linear relations 
for  k . 
 
• If the plane wave   tirkiAetr  


,  is a solution of the wave equations then all plane 

waves satisfying the corresponding k  relations are also possible solutions and all 
their linear combination is also a solution   general solution is then given by 

 
 

   













 zyx
tirki dkdkdkekgtr 





2/32

1
,  

 
• In the above  kg  is in general complex. It is also smooth enough to allow 
differentiation inside the integral 
 
• It can be shown that any square integrable solution of the wave equations can also 

be written as    




 kdekg tirki 3

, where zyx dkdkdkkd 3  

 

•  
 

   




 kdeekgtr tirki 3
2/32

1
, 





 which is a superposition of many plane waves, 

is called a wave packet (in EM we often use the term pulse). 
 
• Now, consider the case of one-dimensional propagation.  Suppose that our wave 
packet is propagating parallel to x-axis, then 

     dkekgtx tiikx 




2

1
,  

 

• At a given time (say 0t ),    




 dkekgx ikx




2

1
0, . This can be used to show 

   




 dxexkg xik0,
2

1 


 

 
•  kg  is sometimes called the spectrum of the wave packet or the pulse 
 
• From above note that     kgx F0,  and     0,1 xkg F  
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Spatial form of a wave packet (pulse) 
• To understand the idea of superposition and how a wave 
packet comes about as the result of superposition, consider the 
following one dimensional case. Let  0,x  be composed 

only of three plane waves with 0kk  , 20 kkk  and 

20 kkk  and all k


vectors pointing along x-axis 

 
• Then 

       



2

1

2

1

2

1
0, 0

00

0
2

0
2

0



















 







 


xik

x
k

kix
k

ki

ekgekgekgx  

 
• Since the spectrum is discrete the integration has been replaced by a summation, 

i.e.        



N

l

xik
l

ikx lekgxdkekgx
12

1
0,

2

1
0,





  

 
• The  0,x  above can be further simplified to  

   
























xik

x
k

ix
k

i

e
eekg

x 0

22
1

2
0,

22
0


  

   














 

2
cos1

2
0, 00 xk

e
kg

x xik


  

 

• We want to find x for which    00,x 
2

kx
or 

 
2

kx
kx  2 or 

kx  2  

 

• Note that 
2

xk
can also be written as  4

22



xk

xk
 

 

2/0 kk  0k  2/0 kk 

 02

1
kg  02

1
kg

 0kg

k
k  

2

2 x

k
x








 

x  

2

2 x

k
x








0x  

x

2/0 kk  0k  2/0 kk 

 02

1
kg  02

1
kg

 0kg

k
k  

x

0  
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• This means that for this example as k , x or as k , x , since the product 
must be conserved 
 
•  0,x given above is a periodic function and has series of maximum and minimum. 
This is because we only considered superposition of 3 plane waves. As the number of 
plane waves is increased, there will be only one maximum point. 

 
• We observe that the waves constructively interfere at 0x and we have a peak 
there. The position at which maximum of the wave packet occurs is   00  xtxM  
 

• Waves destructively interfere at 
2

x
x


 and we have a minimum 

 

• We say the plane waves are in phase at 0x and out of phase at 
2

x
x


  

 

• For electrons    














 

2
cos1

2
0, 0 xkkg

x


  gives the probability of finding the 

particle at some interval. 
 
  

   














 

2
cos1

2
0, 00 xk

e
kg

x xik


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Position of the centre (maximum) point of a wave packet 
 

• In the previous example we consider a discrete spectrum 





 





2

,
2

, 000

k
k

k
kk  and 

observed that a maximum for  0,x  occurred when plane waves interfere 
constructively. Now, let us return to the more general case of  

   




 dkekgx xik




2

1
0,  with       (1) 

     kiekgkg          (2) 

 

• Assume  k  varies smoothly between 



 





2

,
2 00

k
k

k
k then 

      
 0

00
kkdk

d
kkkk

  

• Let 
0

0
kkdk

d
x






hence       000 xkkkk   substitute this and (2) in (1). We 

have 

          dkeekgx xikxkkki 000
0

2

1
0, 


  

 
• We will add and subtract xik0 to the phase so 

        dkekgx xkxkkxxkkxki 000000

2

1
0, 


  which then can be written as 

 
  

       


 dkekg
e

x kkxkkxi
xkki

000

00

2
0,






 or 

k  

0k  
20

k
k


  

20

k
k


  

k

 kg  

k

0k  2/0 kk 2/0 kk 
k  

Discrete Continuous 
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 
  

     







 dkekg
e

x xxkki
xkki

00

00

2
0,






,  (1) 

where we recall 
0

0
kkdk

d
x






and      kiekgkg   

 

• If 
kkk

xx






11

0
0  then   00 xxkkie   oscillates very rapidly such that the 

integration in (1) produces small number  0,x  for this case is small 
 

• If 
kkk

xx






11

0
0 then     00 xxkkiekg  oscillates slowly and the result of 

integration is not negligible  0,x  is measurable. 

• Above discussion can be summarized as the following: when x is far away from 

0

0
kkdk

d
x






 the integrand    00 xxkkie   oscillates rapidly (plane waves interfere 

destructively) and  0,x  is practically zero. When 
0

0
kkdk

d
xx






the integrand 

varies slowly (plane waves interfere constructively) and  0,x  is large. This means 
that the maximum point of the wave packet (centre of the wave packet) occurs at 
position Mx  given by: 

 
dk

d
xtxM


 00  

 

• For  
  

     


 dkekg
e

x xxkki
xkki

00

00

2
0,






 when x deviates from 0x ,  0,x  

decreases. This decrease can be appreciable when 
   1100  xkxxkk . 

This inequality should remind us of the Heisenberg uncertainty.  
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Stationary Phase Condition 
 
• The position of the maximum point can also be obtained by applying the stationary 
phase condition to  

         




 dkekgdkekgx kkxiikx 




2

1
0,  

 

• Over the interval 



 





2

,
2 00

k
k

k
k ,  0,x  is large when the phase of the 

integrand varies slowly with respect to k  (evaluated at centre wave number 0k ), i.e. 

    




00
00 kkkk dk

kd
xkkx

dk

d   (Stationary Phase Condition, SPC) 

   
0

0

0 x
dk

kd
tx

kk
M 




. 

Mx  is the position at which the wave packet has a maximum 
 

Time Evolution of free wave packet 
 
• In our previous discussions we have shown that a plane wave  tkxie   moves with 

phase velocity 
k

vp


 , obtained from the condition  tkx  constant, i.e. 

pv
kdt

dx
txk 

 constant  

 
• If   is a linear function of k  (or the other way around), as shown in the figure, the 
wave packet which is a linear superposition of many plane waves will also propagate 
with the velocity pv  without distortion or broadening. Hence the wave packet 

maximum ( Mx ) also travels with velocity pv . 

 
• If the relation between   and k  deviates from what is 
shown in the figure, then different plane waves propagate at 
different phase velocities. This means that the wave packet 
(and hence the position of its maximum) does not propagate 

at 
0

0

k


(the phase velocity of the main component or 

average phase velocity) but at some other velocity, we will call group velocity. 
 

k  


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• In order to see the time evolution of the wave packet let us start 
with our previous example of three plane waves propagating 

along the x -axis with 0k , 
20

k
k


  and 

20

k
k


  

 
• In the previous example we studied   at a particular time 

0t , i.e.  0, tx , here we study  tx,  

        tix
k

kitix
k

ki
tixik ee

kg
ee

kg
e

kg
tx







 







 







 







 


  2202200

0000
00

2222
,





  

    



















 










 





tx

k
itx

k
i

txki eee
kg 22220

2

1
1

2
00





 

     














 




  tx
k

e
kg

tx txki

22
cos1

2
, 000 


   

 

•  tx,  maximum occur at   t
k

txtx
k

M 






 

0
22

 

 

• Note that the position of maximum is not simply t
k0

0
but t

k


. 

 
• Let us look at the location for the maximum of  tx,  from the point of view of 
constructive and destructive interferences among the plane waves. 
 

 
• Figure shows the position of the maximums for the three-plane-waves at 0t  (Fig. 
a) and at 0tt  (Fig. b) 

 
• At time 0t , the plane waves maximums (designated by the digit 2) are all at 
position 0x .  In other words, for 0t waves interference constructively at 0x  
and we have the wave packet maximum also at 0x . 
 

(2) 

20

k
k


  

0k  

20

k
k


  

(1) (2) (3) 

(1) (3) 

(1) (2) (3) 

0  

 0txM  

x

Fig. (a) 

(2) 

(1) (2) (3) 

(1) (3) 

(1) (2) (3) 

0  

 0ttxM   

x

Fig. (b) 

2/0 kk  0k  2/0 kk 

 02

1
kg  02

1
kg

 0kg

k
k  
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• At time 0tt  , wave 
20

k
k


 has caught up with wave 0k  which in turn has caught up 

with wave 
20

k
k


 . The plane waves maximums (designated by the digit 3) now all 

line up at   00 t
k

txx M 





, which is clearly not the same as 0
0

0 t
k


. Recall that  0txM  

designates the location of the wave packet maximum at time 0t . 

 

Stationary phase condition 
 
• In our previous discussion we showed that for  0,x  given by 

          dkekgdkekgx kkxiikx  0,  where      kiekgkg   the position of 

maximum at 0t  was given by   0

0

0 x
dk

d
tx

kk
M 




 

 

• The position of the maximum for      dkekgtx tiikx 




2

1
,  at any time can be 

obtained with similar reasoning if we note that       tkkk   , then 

          





00

0

kkkk
kkM dk

kd
t

dk

kd
tkk

dk

d
tx

  

   
0

0

xt
dk

kd
tx

k
M 


.  Compare1 this with  1xtvx  

We can define our new velocity (the group velocity) as 
 

g
kk

v
dk

kd


 0


 

 
Summary of Velocities for free electrons and photons 

• For free electrons 
m

P

m

k

k
v

m

k
p 222

2


   

• For free photons    kn

c

k
v

kn

ck
p 

  

• For free electrons 
m

P
v

m

k

m

k

dk

d

dk

d
v pg 








 2

2

2 
 

                                                 
1  Or note that     gM vdkkddttdx    
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• For free photons 
   

  













 


kn

k
dk

kdn
kn

c
dk

d
vg 2


or 

     

 g

g n

c

d

dn
n

c
v 


  

General case of 3D wave packet  
• In the beginning of our discussion, considering the case of free particles, we stated the 
principle of spectrum decomposition for propagation in three dimensions as  

 
 

     kdekgtr tkirki 3
2/32

1
,

 


 ,     (1) 

• However, (1) may not always hold for non-free particles.  For example, for an arbitrary 
potential [   0constant  FrV


] (1) does not necessarily hold, and in addition the 

potential (or index) may also depend on time.  
 
• Eq. (1) then needs to be modified according to  

 
 

  kdetkgtr rki 3
3/2

,
2

1
,

 
  

 
• The arbitrary time dependent potential is now introduced via  tkg ,


 

 
• Also a priori, there is no reason to believe  tkg ,


 can be expressed in terms of products, 

i.e.        tkgtkgtkgtkg zyx ,,,, 321


 

 

• We make the following hypothesis:  tkg ,


 at a given time t , has a pronounced peak at 

0kk


  and is negligible when the tip of k


leaves the domain kD centered at 0k


 

 

• We write      tkietkgtkg ,,,


 , then 

 
 

 
 

    kdetkgkdetkgtr trkirki 3,,
2/3

3
2/3

,
2

1
,

2

1
,

  


   

, 

where       zkykxktkrktktrk zyx  ,,,,
   and  trk ,,

  is the phase of the 

wave 
 

• Note that  
 

    kdetkgtr trki 3,,
2/3 ,

2

1
,

 


   has a maximum when all the waves for 

which kDk 


are in phase when  trk ,,
  varies little in the domain kD  
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• We now examined the variation of  trk ,,
  about 0k


. We define the difference vector 

k


  as 0kkk


  where  

     
zzyyxx

zzzyyyxxx

akakak

akkakkakkkkk

ˆˆˆ

ˆˆˆ 0000










 

 
• Then the variation of the phase [  trk ,,

 ], to the first order is given by  

       
000

,,,,,,,,
kkz

z

kky
y

kkx
x trk

k
ktrk

k
ktrk

k
ktrk




































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           (1) 

 
• (1) can be written as 

          
000

,,,,,, kkkkkkkkk tkrkrktkktrkktrk  


        (2) 

where we have used     rktktrk
  ,,,   

 
• To minimize  , we set the bracket equal to zero 

  


0,
0kkk tkr

     
0

,
kkkM tktrr




   

 trM


 is the position of the wave packet maximum 

 
• Let us define Mrrr

  in the rD domain 

r
 Variation of position vector  r


in the domain rD , from the position of the wave 

packet maximum ( Mr


) 

k


 Variation of k


vector in the kD domain from 0k


, where 0k


 is the value for which 

 tkg ,


 is maximum 

 
• Then (2) can be written as         rktrrktkrktrk Mkk

  
0

,,,  

 
Remark: When variation of the phase  trk ,,

  is 1 , the wave function  tr ,
 is much 

smaller than   tr ,max
 , but  

   11,, rktrk
 
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•From the expression for the position of the maximum we had: 

   
0

,
kkkM tktr




  . 

The velocity of the maximum point is given by the time derivative of  trM


. This is the 

velocity by which the wave packet (a grouping of the plane waves) propagates. This 
velocity if called the group velocity 
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    
0

, kkkMg tk
dt

d
tr

dt

d
V 


   

 
• In the case of a free wave packet that necessary does not satisfy        321 kgkgkgkg   

we can write: 
      tkktk


  0,, , such that  

 
 

 
 

      kdeetkgkdetkgtr rkitkirki 3,
2/3

3
2/3

,
2

1
,

2

1
,

  


  

 
        kdeetkg tkrkiki 3

2/3 ,
2

1 


  

 

• Back to the expression for     
0

, kkkMg tk
dt

d
tr

dt

d
V 


  , with 

      tkktk


  0,, , we now have  

        
00

, kkkkkkg tkk
dt

d
tk

dt

d
V 


        

00 kkkkkk tk
dt

d
k

dt

d



    

     0
0 kkk tk 


  

0kkkg kV 




   

 
• If the dispersion relation  k


  is known, the group velocity can be obtained from 

 
0kkkg kV 




   

 

• Surfaces    
0000 ,,

,,
zzyyxx kkkkkkzyxkk

kkkk


  


 are the surfaces of equi-frequency 

 
• In one-dimension for which 0 yx kk , and kkz   the group velocity is given by  

    zzz
z

kg a
dk

d
ak

k
kV ˆˆ

 






, the well known result in 1D 

 

• For electrons    222
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• For photons    kn
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y  

x

z

0  
1k


 

2k


 

3k


 

  
  

 
• For dispersion-less medium   kn


constant 

    kVVVk
kn

c
Vkn pgpgk





 ˆ0  

 

• Note when dispersion is present,   0 knk


, then gV


is not necessarily parallel to k̂  

 
• In the above we developed the general concept of wave propagation. As an example, let 
us see what happens to waves propagating in two-dimensions.  
 

Two dimensional wave propagation 
 
• We assume our wave packet is composed of 3 plane waves, with propagation vectors 

,, 21 kk


 and 3k


. 

 
• We also assume that all the three plane waves are in the 

xy  plane and kkkk  321


 (see figure). 

 
• From the figure it is easy to see that 

yyxx

yyxx

xx

akakk

akakk

akk

ˆˆ

ˆˆ

ˆ

333

222

11













 

 
• For the three plane waves that are nearly co-linear, i.e. 
  is small, we have 

kkk x  11


 

kkkk x  222 cos 


 

  kkkk y 222 sin


 

kkkk x  333 cos


  

  kkkk y 333 sin


 

 
• Then 

yx

yx

x

akakk

akakk

akk

ˆˆ

ˆˆ

ˆ

3

2

1














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yk  
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

 

2k


 

3k


 

yk  
  

  
xk  
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 kg  

yk  
0  k k  

1 

2

1
 

 1kg  

 2kg 3kg  

• Note that ,, 21 kk


and 3k


 are  to the z -axis and from the figure  kkk yy 22 2  

 
• Recall that from the principle of spectrum decomposition for continuous and discrete 
components we had 

    kdekgtr rki 30,  
  for a continuous distribution of k  

   



1

0,
l

rki
l

lekgtr
  for a discreet distribution of k  

 

• Here    ykgkg   and we suppose (similar to our previous consideration) that it has a 

shape as shown in the figure 

   

   13

12

2

1
2

1

kgkg

kgkg




 

 
• The wave packet is then given by 

           



 rkirkirki

l

rki
l ekgekgekgekgtyx l

 
321

321

3

1

0,,  

    



   rkirkirki eeekgtyx


321

2

1

2

1
0,, 1 . 

Using xakk ˆ1 


, yx akakk ˆˆ2 


, and yx akakk ˆˆ3 


 we have  

        



   ykxkiykxkixik eeekgtyx 

2

1

2

1
0,,


 

      ykekgtyx ikx   cos10,,

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•  yx,  is maximum when 0y , i.e.   1cos  yk  , therefore the maxima for  yx,  

lies on x -axis. As we move away from x -axis ( y increases)  yx, decreases. 
 
• let us find the values of y for which the wave function is zero 

      2,1min,1cos0, ykykyx  






k

y min,1 , and 






k

y min,2 . We define y  (the spread in the y-direction) as 

 






k

yyy
2

min,2min,1  

 






k

y
2

 

 
kky  2  

 
• From above analysis we see that for our wave packet, composed of three plane waves 

,, 21 kk


and 3k


, the spread in y is given by 





k

y
2

and the spread in yk  is given by

 42  yy kykk  (compare this to our results for one-dimensional 

propagation) 
 
• From 









k

y
k

y
22

 

This relation is well-known in diffraction theory. It says that if we try to confine the 
lateral extension of a beam, its angular spread must increase or visa versa. 
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Apertur

y y

Aperture Angular spread is 
increased as y is 
decreased 


