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The propagation of electromagnetic wave packets
(pulses): Group Delay

* In discussing wave propagation in a medium we may describe the phenomenon in
terms of velocity or equally well in terms of the time required for the propagation.
For example, we will see that the peak of a well-behaved EM wave packet (pulse)
propagating in a medium of index n(a)) moves with group velocity v,. We can also

formulate this problem in terms of the time it takes for the packet to travel a given
distance through the medium. This time is referred to as the group delay.

* Let us consider the following. A medium characterized by its transmission function
T(w) is excited by an incident pulse f(t)= f,(t)cos(e,t), where the output of the

system is g(t).

f(t) g(t)
/\/> T’l{'l'(a)):|T(a))|ej¢(“’)}=T(t) /_\_/’

« f_(t) is the envelope of the modulated incident wave packet f(t), and a, is the
frequency of modulation.

« In the language of the linear system theory, T(w) is the network function or the
system response.

+00

g(t)= J. f(r)T(t-7)dr

—00

convolution integral
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* For a well-behaved wave packet and a medium that is not too dispersive (or equally
for narrow bandwidth wave packet) the relation between f(t) and g(t) is shown
below

ey A [RMICYACES
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* In the following we shall see that the output [g(t)] is indeed a delayed version of the
input [ fe(t)] by an amount given by the group delay (z, ), and we will obtain an
expression for the group delay.

« For the input f(t)= f,(t)cos(w,t) we assume f,_ (the envelope) is narrowband, i.e.
Fe(a))|:0 for |a)—a)o| >Q and o, > Q

» Graphically, the condition |F, (@) = 0for |& - w,| > Q is shown here

A
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« We also assume T(w)= l'r(a))| e#() has the following properties:
{IT (@) is even about origion

#(w)is odd about origion

A

K f (o)

* For symmetric systems such as above, the network function T(a)) can be expressed
as the sum of two terms:
T, () for positive frequencies

T,(@)for negative frequencies

¢ T(a) =T1(a))+T2(a))
T,(0)=T(0)U (o) U(w)
U

T(@)=T(®)U(-)

* U is the step function (Heaviside function) 4
()= {1 forw >0

0 forw<0

N—"

v
S

Ulw

and

U(—a))— 1 forw<0
|10 forw>0

\ 4
e

« Since inverse Fourier transform of T(w), i.e., #*[T(®)], (the impulse response)
must be real, then we can show T(~®)=T"(@) which can be used to show
T (_ a’) =T, (a)) (HW)

« But what is T,(@)? let us now find an expression for : T,(w) = A(w) e

« At the vicinity of «,, we approximate A(w) by A(w)=~ A, and ¢(w) by:
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Heo)=dla)+ 2 (0-0)++-
:_{_M_% (w—a)o)—--}

@, dol,
* Let us define
iy = —M as the phase delay and

Wy
rgs—j—¢ as the group delay,

a)a’o
then,

__)_odle) _dé| (oL _

¢(a))— { o, da)%(w 600) }— {a)oz'p+(a) a)o)fg+ }

» Hence to second order approximation
Tl(a)): A(a))ej¢(zu) ~ Aoefllzuoerr(w—wo)rgJ _ Aoefjworpeq(a;f%)rg

« Knowing T,(w) from above, T,(®) can be evaluated from T,(- w)=T," (@) to be
(HW) _ _
T2 (a))z AbeJa’OTpe_J(aH'a)O)Tg

* Now we are ready to calculate the output from linear system theory

o) o] o

G(w)= F(@)T(0)= G(w)=#[f,(t)cos(wt)][T,(@)+T,(w)] where # means the
Fourier transform

Fe(a)+w0)+ Fe(a)_wo)

, Where
2

« From Fourier transform we know #[f,(t)cos(e,t)]=
F(e)=#[f,(t)

« Then G(w) can be written as

6(0)- | Flr ) Bl o)., o)

Fe(a)+a)o)T1(w)+ Fe(a)+a)o)Tz(w)+ Fe(a)_a)o)Tl(w)_I_ Fe(a)—a)o)Tz(a))
2 2 2 2
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» Note that from our condition on F, (), i.e. |F,(@) =0 for |o—a,| > Q with
w, >Q, we can conclude that F,(o+a,)=0, hence F,(w+®,)T,(0)=0.

F.(o)

W, — W, W, +

« Similar reasoning implies that ACH az)o (@) _ 0

* Then

g(a))z FE(a)+a)0)T2(a))+ Fe(a)_a)o)Tl(w)

2 2

« In the above we substitute the expressions for T,(w)and T, (@) from the last page,
and we have
G(a)) _ Fe (a)2+ ), ) Aoeja)orpe—j(w+a)0)rg Fe (CO — )

2

+ Abefiworpefj(w*wo)fg

» With some careful thinking and a table of Fourier transforms we can see that
0(t)=7[6(0)]= .t -7, Jeos[y(t -7,)]

* 7, is the time by which the envelope of the wave packet is delayed (or advanced)
and is a measure of the group velocity.

* 7, is the time by which the phase of elementary excitations (harmonics) are delayed
(or advanced) and is a measure of the phase velocity.

. . : L .
* This means that the wave packet moves with group velocity v, =—, where L is

Ty

the physical thickness of the medium characterized by T (o)

» This means that the elementary excitations (harmonics) moves with phase velocity

v, = L , Where L is the physical thickness of the medium characterized by T(a))
T
p
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Group velocity and group delay in the matched medium
case

* Recall that transmission coefficient for a slab was given by
+i¢
T'™ :Lezz_, where ¢ = —k,,L = an cosé, L with
1—(r,, ) e®" c @ @ @
T ™® =Field transmission coefficient, and
_ Ky, — 1Ky, _

= piKy, + 15K, - < >

t, = 241K, L
HoKy, + 1K,

t 214Ky,

21

Ky, + 1Ky,

* Under the matched matching: r,, =1, =0= uk,, = 1k, =>t, =t =1
then we have T ™= (w)=e. Therefore, transmission only introduces a phase term

* et us calculate the group delay

—%:—i[—kzzL]:L%ZLDV b _ L
ow Ow

T e v, C ok, 1,

This is sometimes called generalized group velocity

: t,t,e e
» Note that in general T(w)=—22—— =[T(o)e'”. Since t,,,t,,1,,gareall
l_(r21) e
complex then
Lol L L

T, —aa[Trans. phase] —i[¢']
@ 0w

Above expression also takes the interface effects (mismatch effects) into account.
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Free Particles (free electrons and photons)

* In the following we will derive some of the general properties of the waves, or more
specifically wave packets (pulses or wave functions), which are applicable to both
electromagnetic and also electronic waves. We begin our study be considering free
particles (free electrons or photons).

Electron Case:
» Quantum mechanics Postulates that the state of a particle (all you need to know about
a particle) at time tand position F is determined by the wave function ‘P(f,t), where

W(r,t)is called the probability amplitude. In other words, the probability of finding

the particle, at time t, in a volume element dr® = dxdydzsituated at the point F is
given by
dp(F,t)=C|¥(F,t) dr?

» Quantum mechanics postulates that the time evolution of the wave function lP(r,t) IS
governed by Schrédinger equation
I L a
—WYI(r,t)=——V°Y(r,t)+VI(r)¥(r,t
in—P(r, ) =— V(1) +V(r)¥(rt)
where V(r) is the time independent potential.
« In Schrédinger equation let P(F,t) = ¢(F)#(t) then
g d ~h® ~ N\ (e
n(r) = L OV 40 +V (P2 ) = @

in_dx(t) _ B L Gee)ev(r) =

2(t) dt 2m ¢(r)

only a function of only a function of position=constant =w
time=constant =1«

i_d;((t) =ho= —dl(t) = —ia);((t):
2(t) dt dt

0= e ¥ )- AP = e

we have absorbed A
ing(r)

» Then RHS of (1) can be written as
() 4V ()= hooglr) - EgF)

where E =7 is the energy. This is called Schrodinger equation in the stationary
form.

«¥(r,t)=¢(r) e is called the stationary solution of the Schrédinger equation
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« In stationary state form, the probability density [(F,t)" =|¢(F) is time
independent

* A stationary state is a state with well defined energy E = o

* In classical mechanics if potential is time independent, then total energy is a
constant of the motion. In quantum mechanics, this means that a well determined
energy state exists.

* Now, let us focus on the stationary form of the Schrodinger equation.
hZ

2m

#(r)= Ae™"  then it can be shown that

2 21,2
ke vmEs "R L v o
2m m

V2g(F)+V(F)g(r)=E 4(F). Suppose the solution to this be written as

2 =20 ()

* If over a region of space V =0 or constant, i.e. F =-VV =0 (no force), then we say

the particle is free and we have
21,2

E= hz:;e (free electron dispersion relation)

» Using Broglie relation P = 7k , where now k must be replaced by k,, we can write

thZ PZ
E= ¢ — —— which is our classical result for free electron
2m 2m

» Also using Einstein relation E =z , for free electron we can write o in terms of
k, according to
o ke
2m
« Finally, note that for the stationary state ¥(r,t)= Ae*"e™, the probability density

IS given by |‘I’(f,t)|2 = A? which is a constant

* Hence for the plane wave ‘P(r,t) = Ae*Te " the probability of finding the electron
at any point in space is the same, however this cannot represent a physical situation.
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Photon Case:

» The dynamical wave equation governing the behavior of electromagnetic waves
(photons) in a simple medium in absence of charges and conduction current is the
Helmholtz’s wave equation given by

2
vzi(r,t)—yg%@(r,t)zo,
where &(F,t) is the electric filed.

* In comparing the wave equations for electrons and photons note the order of the time
derivatives and the vector nature of the electric field.

* The stationary form of the Helmholtz’s wave equation is given by

V?E(F)+Q?ue E(F)=0, where Q is the optical frequency

« Suppose the solution to this be written as E = E, ", then it can be shown that

—k§+§22yg:0:> k, =Q ,ug=%n(Q)

* The dispersion relation for free photons is then given by

k
K, :%n(ﬂ) or equally Q:F(Ff)

E=lw o
4 Free electron A Free photon
dispersion dl_sper5|on
(parabolic) (linear)
> Kk, > Kk,




Band Gap

E [eV]

Ju NL__m_“E
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Principle of Superposition

* The discussion to follow is applicable to both electrons and photons, i.e. the
Schradinger or Helmholtz’s wave equations in the stationary state. We take W(F,t)

to be either the electronic wave function or any components of the electric or
magnetic fields. We also represent the frequencies (electron or EM waves) with @,
and k is the corresponding wave propagation for electrons (k) or photons (k).

Clearly, the main difference between the two cases is the parabolic or linear relations
for w(k).

« If the plane wave /(F,t)= Ae* " is a solution of the wave equations then all plane

waves satisfying the corresponding k — @ relations are also possible solutions and all
their linear combination is also a solution = general solution is then given by

+00+00+00

el RS g(k ek, dk, dk,

—00—00—00

« In the above g(k) is in general complex. It is also smooth enough to allow
differentiation inside the integral

* It can be shown that any square integrable solution of the wave equations can also

be written as [ [ [ g(k)e""*“d’k , where d*k = dk,dk, dk,

. w(r,t)zﬁ” J'g(k)e‘R're“‘”‘d 3k which is a superposition of many plane waves,
T —00
is called a wave packet (in EM we often use the term pulse).

* Now, consider the case of one-dimensional propagation. Suppose that our wave
packet is propagating parallel to x-axis, then

l// Xt g |kx iwldk
ok

+00

« Atagiven time (say t = 0), w(x,0)= 1 jg(k)e‘kxdk . This can be used to show

g(k):%fmx,o)e-i“dx

. g(k) is sometimes called the spectrum of the wave packet or the pulse

« From above note that (x,0)= #[g(k)] and g(k)="[y(x,0)]
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g(ko)
. 1 4 1
Spatial form of a wave packet (pulse) 5 9k) ‘ 59k
* To understand the idea of superposition and how a wave A A
packet comes about as the result of superposition, consider the Ak
following one dimensional case. Let y/(x,O) be composed < >k
only of three plane waves with k =k, , k =k, + Ak/2and k.—Ak/2 k K. +Ak/2
k = k, —Ak/2and all k vectors pointing along x-axis ,
—
* Then i > X
i ko— Ak) - 1 0

x,O:—k( j+ k( +g(k, ™ |——

v(n0)=| 5 alko R 4 Jalk R s gl |

* Since the spectrum is discrete the integration has been replaced by a summation,

ie. y(x0)= _J'g )e*dk = w(x,0)= ZQ e
« The w(x,0) above can be further simplified to
( ) iA—kx —iA—kx
g9(k, e’ e % | ikx

x,0)= 1+ + e =

px0)= = L+ =+ —
g(ko) ox (Ak xj

X,0)==—=e""|1+cos
w(x,0) o >
« We want to find x for which y(x,0)=0= ATkX _ror A%y 27t/ Ak or
X =—2r/Ak

g(ko)
1 A 1
Eg(ko) Eg(ko)
A} A
Ak AX
* o,k | | Iy
ko—Ak/2 K, ky+Ak/2 21 AX ! o Ax
= —_— X =
Ak 2 Ak 2

* Note that % = 7z can also be written as A?k% =7 = AK Ax=4r
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« This means that for this example as Ak {, Ax Toras Ak T, Ax <, since the product
must be conserved

. y/(x,O)given above is a periodic function and has series of maximum and minimum.

This is because we only considered superposition of 3 plane waves. As the number of
plane waves is increased, there will be only one maximum point.

'} (q
A NAAAAAAAY 2 “’"*‘“'}
| | Ezn

' !
*—"—\L‘\/\/\f\f\—/i Re[ 2 mae o

| Re {(x) ) !
B 'i'.;;‘\j/\'""{\ /\W'{
I VIV

» We observe that the waves constructively interfere at x = 0Oand we have a peak
there. The position at which maximum of the wave packet occurs is x,, (t =0)=x=0

. . AX ..
» Waves destructively interfere at x =— and we have a minimum

» We say the plane waves are in phase at x = 0and out of phase at x = ax

* For electrons |zy(x,0] = %{H cos( Al; ﬂ gives the probability of finding the
T

particle at some interval.
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Position of the centre (maximum) point of a wave packet

* In the previous example we consider a discrete spectrum (ko Ko +A7k, K, _A?kj and

observed that a maximum for w/(x,0) occurred when plane waves interfere
constructively. Now, let us return to the more general case of

1 .
x,0)=——— | g(k)e™*dk with 1
w(x,0) N ng()e (1)
g(k)=|g(k)e"“® )
A lg(k)
A Ak A
> k Ak
k,—Ak/2 K, k,+Ak/2 ! ! ok

K, —A?k K,k +2K

Discrete Continuous

« Assume a(k) varies smoothly between [ko —A?k, K, +A7k} then

k)= )+ (k)

+...
k=kq

hence a(k)=a(k,)—(k -k, ) X, substitute this and (2) in (1). We

k=kq

e Let X, = o]

have

1 ilar(ko )—(k=kg )x ik x
W(X,O)zﬁﬂg(ko){e[ (ko (kKo o] ik X g

» We will add and subtract ik, x to the phase so

1 ila — KXo+ KgXo + KX + KoX — KX
W(X,O):Eﬂg(k)‘e[ Ko -loas koo +hx +kx—ko ]dk which then can be written as

ifa(ko +koX]

W(X,O)Z \/Z J.‘g(k)‘ei[xo(ko—k)—x(ko—k)]dk or



ifa(kg )+kox] +
€ i[(k—ko )(x=x
V/(X’O) = —\/g J“g(kxe [(k Ko )( 0)]dk ’ (1)

where we recall x, :_d_a and g(k): |g(k)|eia(k)

k=ko

L L then @) oscillates very rapidly such that the
k—k| Ak

integration in (1) produces small number = y/(x,0) for this case is small

o If [x — x| >>

L L hen |g(k g™ *X~) oscillates slowly and the result of
k—kj|  AK

integration is not negligible = w(x,0) is measurable.

o I |x — x| <<

» Above discussion can be summarized as the following: when x is far away from
da

X =g the integrand (e ( 1k=ko Jox-g )oscillates rapidly (plane waves interfere

k=kq

destructively) and z//(x,O) is practically zero. When x = x, = _da the integrand
k=ko

varies slowly (plane waves interfere constructively) and y/(x,O) is large. This means

that the maximum point of the wave packet (centre of the wave packet) occurs at
position X,, given by:

d
XM( :O):Xo: di

« For y(x,0)~ “g klbx)gk when x deviates from X, [y(x,0)

decreases. This decrease can be appreciable when
(k —ko (X =%;)>1=> Ak Ax >1.
This inequality should remind us of the Heisenberg uncertainty.

89
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Stationary Phase Condition

* The position of the maximum point can also be obtained by applying the stationary
phase condition to

PN |
w(x0)= — [ alk)e™dk = [|g(k Je' ™ ak

« Over the interval {ko —A?k, K, +A7k] w(x,0) is large when the phase of the

integrand varies slowly with respect to k (evaluated at centre wave number k,), i.e.

dd—k(kx+a(kw =0= x+dZ—£k)

k=kq

=0= (Stationary Phase Condition, SPC)

k=ko

del(k
xM(t:O):—% =X,
k=K

X\ IS the position at which the wave packet has a maximum

Time Evolution of free wave packet

i(kx—at)

* In our previous discussions we have shown that a plane wave e moves with

phase velocity v, = % obtained from the condition kx — ot =constant, i.e.

=k x—aot:constant:>%=2=vp
dt  k

* If w is a linear function of k (or the other way around), as shown in the figure, the
wave packet which is a linear superposition of many plane waves will also propagate
with the velocity v, without distortion or broadening. Hence the wave packet

maximum (x,, ) also travels with velocity v .
[0

* If the relation between » and k deviates from what is

shown in the figure, then different plane waves propagate at

different phase velocities. This means that the wave packet

(and hence the position of its maximum) does not propagate » k

at % (the phase velocity of the main component or
0

average phase velocity) but at some other velocity, we will call group velocity.



g(k, )
« In order to see the time evolution of the wave packet let us start 1 AO 1
with our previous example of three plane waves propagating 5 g(ko) Eg(ko)
o Ak Ak
along the x-axis with k,, k, + — and k, - — A A
2 2 Ak
< > .k

* In the previous example we studied y at a particular time
t=0,ie w(xt=0), herewe study w(xt)

ol oll) (8T A o) (2 o)
‘/’(X’t)—\/ﬁe NN e I e

_ g(ko ) el(koxwot)|:1+ %ei[AZkX—Azwt] N e_i(%kx_%at] ] -

NP

g(ko) ik x—a)ot)|: (Ak Aw ﬂ
X t)= e’ 1+cos| — x——t
‘//( ) \/Z > >
« w(x,t) maximum occur at A%(x—&t =0=x,, (t)= i_ft

* Note that the position of maximum is not simply %t but i—ft.

0

« Let us look at the location for the maximum of w/(x,t) from the point of view of
constructive and destructive interferences among the plane waves.

o+ W @ o] W @| e
s w| @] o w| @ o
-5 | @ ®] o @] o
3 > X —5] > X
e @ (J: ) Fig. (b) XMT(t "

* Figure shows the position of the maximums for the three-plane-waves at t =0 (Fig.
a) and at t =t, (Fig. b)

» At time t =0, the plane waves maximums (designated by the digit 2) are all at
position x =0. In other words, for t = 0 waves interference constructively at x =0
and we have the wave packet maximum also at x =0.
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* At time t =t,, wave k, +A7k has caught up with wave k, which in turn has caught up
with wave K, —A?k . The plane waves maximums (designated by the digit 3) now all

line up at x =x,, (t0)=i—fto , Which is clearly not the same as %to. Recall that x,, (t,)
0

designates the location of the wave packet maximum at timet, .

Stationary phase condition

* In our previous discussion we showed that for y/(x,O) given by
w(X,O) = J‘g(kkikxdk = ﬂg(k)‘ei(ma(k»dk where g(k)=|g(k)e"* the position of

_da|
dk

maximum at t = 0 was given by x,, (t =0)= X

k=kq

* The position of the maximum fory (x,t)= \/ng(k)eik““”dk at any time can be
2

obtained with similar reasoning if we note that a(k) —» a(k)-a(k)t, then

o ()= =5 [e) - ol K], = dolk)| , _dalk)

t— 2\
dk |,  dk

K=k,

Xy (t)= dcctj)—lik) t+x,. Compare' this with x =vt+x, =
3

da(k)
dk

We can define our new velocity (the group velocity) as

k=kg

Summary of Velocities for free electrons and photons

nk? o hk P
« For free electrons O=—=>V, =—=_—=——
2m k 2m 2m
ck 1)) C
e For free photons w =——=>v, =—=——
P 00" T T )
2
« For free electrons v :d—a):i —hk :K:ZV EE
® dk dk| 2m m P m

L Or note that dx,, (t)/dt = de(k )/dk = v,
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dn(k
o |00k C
* For free photons v, =—— =¢c| ———~——|0r v, = =
° dk n®(k) ’ n(a))+wdn(a)) n, (o)
dw

General case of 3D wave packet

* In the beginning of our discussion, considering the case of free particles, we stated the
principle of spectrum decomposition for propagation in three dimensions as

vir )= ﬁm g(k)e* kg (1)

* However, (1) may not always hold for non-free particles. For example, for an arbitrary
potential [V (F)= constant = F = 0] (1) does not necessarily hold, and in addition the
potential (or index) may also depend on time.

* Eg. (1) then needs to be modified according to

w(r t)= #Mg(ﬁ,t)e“dﬁ‘k

* The arbitrary time dependent potential is now introduced via g(R,t)

» Also a priori, there is no reason to believe g(l?,t) can be expressed in terms of products,
ie. g(k.t)= g,k 1) g,k t) g5k, 1)

» We make the following hypothesis: ‘g(lz,t] at a given time t, has a pronounced peak at

k =k, and is negligible when the tip of k leaves the domain D, centered at k,

« We write g IZt :‘g IZ t}ei”‘(m then

w(r,t)= @ m (K, tp"*dk = o ”ﬂ K g

where 5( Tt )_ (k,t) k-T (k t)+k x+k y+k z and 5( ) is the phase of the
wave

« Note that w(F,t) = W”ﬂg(ﬁt} e[ g3k has a maximum when all the waves for
T

which k e D, are in phase =when §(IZ, r,t) varies little in the domain D,
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* We now examined the variation of f(lz, f,t) about k,. We define the difference vector

as &k =k —k, where
—ko A, + (k, —ky, A, +(k

x X

o ka )éz

z

* Then the variation of the phase [5(12, f,t)], to the first order is given by

5§(|Z,r,t)=ak{%g(ﬁ,r,t)}k_ko +éky{%§(ﬁ,r,t)}kk M({%f(h’t)}k_ko (1)

. (1)Acan be w[itten as. ) )
selk,rt)=k-|v ek, rt)l, =k v,|alk,
where we have used £(K,7,t)=a(K,t)+

—+

Jek-rl, =&k r+vealktl, @

» To minimize o6&, we set the bracket equal to zero
Ft Vka(k,qk:ko —0=F=T,(t)= _vka(k,t]k:ko
., (t) is the position of the wave packet maximum

* Let us define of =1 —r,, in the D, domain

oF = Variation of position vector (F)in the domain D, , from the position of the wave
packet maximum (T, )

& = Variation of k vector in the D, domain fromk,, where k, is the value for which

‘g(l?,t} is maximum
» Then (2) can be written as o¢(k,F,t)=ok - [F + v, alk t)), =&k [F -7, (t)]=ok-or

Remark: When variation of the phase 55(?, F,t) iIs > 1, the wave function |1//(r,t)| IS much
smaller than max(y(F, t)], but
Ak, -Ax>1
Se(k,Fit)>1=k - oF 21 {Ak, Ay > 1
Ak, -Az>1
*From the expression for the position of the maximum we had:
r, (t)= —vka(R,t}k:kO .

The velocity of the maximum point is given by the time derivative of T, (t) This is the

velocity by which the wave packet (a grouping of the plane waves) propagates. This
velocity if called the group velocity
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v o4 (t):_%[vka(m)]k‘-k‘o

« In the case of a free wave packet that necessary does not satisfy g(k)= g(k,)a(k,)g(k)

we can write:
alk,t)= a(k,0)- wl(K)t, such that

rt)=#“jg(ﬁ,t)e‘“d3k=W”ﬂg(l?,t}ei“('z")em'rd3k
o IR

« Back to the expression for V :%r (t)= _d [V a(k t)] , With

a(k ,t): a(k ,O)— a)(k )t , We now have
\79 = _%[V 0‘('Z t)]k‘ Ko _i{v [“(E)_W(E)t]}k‘:k‘o = _%[Vka(k)]ﬁ_ﬁo +%[ka(lz>t]ﬁ_ﬁo

:0+[Vka)(k) ]k K =V, =V a)(kl K=k

« If the dispersion relation a;(IZ) is known, the group velocity can be obtained from
vV, :Vka)(q_ )
k=K,

are the surfaces of equi-frequency

—ho

« Surfaces a)(q (kx Ky, kzl( o Kk Kook

* In one-dimension for which k, =k, =0, and k, =k the group velocity is given by

v, :ka(ﬁ):a—w(k )a, = do ——4, , the well known result in 1D

ok, dk
« For electrons a)(IZ):hk2 —i[k k +k22]
2m  2m
, Ay a ~ LA nk 1k

« For photons w(R):%
. :vkw(% v {_k} | :C{n(ﬁ)vkk—_kvkn(ﬁ)}“ :C{Qn(ﬁ)—kvkn(ﬁ)}“

(k)



96

* For dispersion-less medium n(IZ):constant =
* Note when dispersion is present, an(IZ);t 0, then \7g is not necessarily parallel to k

* In the above we developed the general concept of wave propagation. As an example, let
us see what happens to waves propagating in two-dimensions.

Two dimensional wave propagation

» We assume our wave packet is composed of 3 plane waves, with propagation vectors
k,, k,, and k.

» We also assume that all the three plane waves are in the y
xy plane and \121\ = ‘IZZ‘ = \Es\ =k (see figure). 4
k
From the figure it is easy to see that ;
|z k.4, .
c oL A A A "1
if_ka kzyAy O<ae
k; =K;d, +Kq,a, K,
* For the three plane waves that are nearly co-linear, i.e. ;
A@ is small, we have
ky =[k,| =k Ky
k,, = ‘Rz‘cosAH ~k, =k
Ky, = Rz‘sin Aez\@ c
_ _ 2
ks =[Ks|cOS A0 [k | = k S
ks, =—JKs|sin A0 = k;[A0 = —kag _
AO K
Ak, . >
* Then ! A0
iil = k X E Izs
, =ka, +kAd &, R ERRRbE
k, =ka, —kAO a,
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« Note that k,k,, and k, are Lto the z-axis and from the figure Ak, = 2k,, =2k A@

* Recall that from the principle of spectrum decomposition for continuous and discrete
components we had

w(rt=0)=[[[glk K)Je'"d% for a continuous distribution of k
w(r,t=0)=> g(k )e'" for adiscreet distribution of k
1=1

* Here |g(k)| = ‘g(kJ and we suppose (similar to our previous consideration) that it has a
shape as shown in the figure

(k)
A A
vook) T k)
—kAO 0 Y
g(kZ):%Q(kl)
g(ks): %9(k1)

* The wave packet is then given by

X y.t= Zg Ik'.r - g(lzl)eilzl'r + g(l?z)e‘@'r + g(kg)e"zs'f =
W(Xi y’t — O): g(Rl{eiﬁl.F + leilzz.f +%ei|23.r:|.

2
Using k, =kd,, k, =kd, +kA@ 4, and k, =kd, —kA@ &, we have

(X y,t= ) g(R’j: ikx ; [kx+kA0y]_l_%ei[kx—kAé?y]:l:>

w(x,y,t= ( )e"‘x[1+ cos(k A@ y)]
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« w(x,y) is maximum when y =0, i.e. cos(kA#y)=1, therefore the maxima for y(x, y)
lies on x-axis. As we move away from x-axis (y increases) l//(X, y)decreases.

* let us find the values of y for which the wave function is zero
w(x,y)—> 0= cosk AO y)=—1= Kk AO Y, , = +7 =

T — T . . . .
- =——"— and - =———_We define Ay (the spread in the y-direction) as
yl,mln k Ae y2,m|n k AH y ( p y )
27
Ay = yl,min - y2,min = k—A@
ky
A
y
‘T Ay Vs —
A O yl,min _7: K AO k2
Ay ymax kX
. @ > X Aky .
s N x R
! YV O Yonin= %——m !
27
Ay = ——
Y kAO
Ak, =2A0 Kk

 From above analysis we see that for our wave packet, composed of three plane waves

k,,k,, and k,, the spread in y is given by Ay = kz—Zeand the spread in k, is given by

Ak, =2A0 k = Ay Ak, = 4z (compare this to our results for one-dimensional
propagation)

Ay =" s ayao=%-
A k

This relation is well-known in diffraction theory. It says that if we try to confine the
lateral extension of a beam, its angular spread must increase or visa versa.



e
ay |
— e

Apertur

Angular spread is

—»

- >
— >
— Ay $
-

—»

—»

increased as Ay is

decreased

Aperture

99



