
Optical electron Analogies 
• We begin our discussion by revisiting the Schrödinger and Helmholtz’s wave equations 
in their stationary state form.  Recall that for the Schrödinger equation we had 
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and that in the stationary state form the probability density     22
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• For a source free simple medium Helmholtz’s equation is given by  
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• (1) and (2) are eigenvalue equation. 
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• Comparing Schrödinger and Helmholtz equations in 1D we have 
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• Comparing the two equations we can make the following correspondence 
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 representing the electron wave vector. 

 

Index and Potential Profiles 
• If dimensions over which potential or index of refraction vary rapidly is much smaller 
than the wavelength of consideration, the potential or index can be considered 
approximately discontinuous 
 

 

Classical, Quantum Mechanical and Optical Analogies 
 
 
Potential step: 
 
 
Case 1: 0VE   
 
Classical Consideration: 
Total energy is conserved 
(total energy E ) 
 
• In region I:  0K.E..K.EP.E.  EE . This is classically allowed 
 
• In region II: 0K.E.K.E..P.E 0  VEE , since 0VE  . This also is classically 

allowed 
 
• Our experience tells us that as the particle moves from region I to region II, it does not 
turn around (reflect) or crash. 
 
Quantum Mechanical Consideration 
 
• In quantum mechanics even though 0VE  , there is a finite probability that the electron 

will be reflected and a finite probability that it will clear off the barrier at 1zz   
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• The wave functions in regions I and II are 
then given by tizik ee  1

1 , and 
tizik ee  2

2 , respectively. They are 
traveling waves. 
 
Optical Consideration 
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• From the above we conclude 12 nn  .  The situation is 
depicted in the figure. Note the similarity between 
optical and quantum mechanical considerations. We 
have incident, reflected, and transmitted waves. 
 
 
 
 
 
 
Case 2: 0VE   
 
Classical Consideration:  
 
• As our particle encounters the 
potential barrier it will reflect. 
 
• In Region I:  0K.E.P.E.K.E.

0

 EE . This is classically allowed. 
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• In Region II:  0K.E.P.E.K.E. 0
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Quantum Mechanical Consideration 
 
• In quantum mechanics there is a 
finite probability for the electron to 
be reflected and there is a finite 
probability that it will cross the 
barrier at 1zz  and can be found at 

some 1zz   
 
• Note that classical physics will not allow the electron to be found in 1zz  . 
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    iEVm

i
VEm

k 






2

0
2

0
2

22


 where 

 





2
02



EVm
 . 

Note that in region II EV 0 . 

 

• The wave functions in regions I and II are then given by 
tizik ee  1
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Optical Consideration 
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2n is purely imaginary 
 
• Medium I can be thought of as a good 
dielectric, e.g. air. Medium II can be thought of as an ideal metal 
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• This analogy should not be taken too far, since real metal has both real and imaginary 
parts of the index. Hence, we have a traveling attenuated wave and not a purely 
evanescent wave. 
 

Potential Barrier 
 
• Here we replace our previous step potential with a potential barrier (finite in extent). 
The effects of evanescent waves are more pronounced in the case of potential barrier 
 
Case 1: 0VE   
 
Classical Consideration: 
 
• The treatment is similar to 
the case of 0VE  for 

potential step. Particle 
moves from I to II to III 
without being reflected 
(crashing) 
 
• K.E.is positive in all the three regions and is reduced in region II since 0K.E. VE   

 
Quantum Mechanical Consideration: 
 
• Treatment is similar to the case of potential 
step. Particle moves from I to II to III but 
there is a finite probability for it to reflect at 

1z or 2z , and a finite probability to be 
transmitted through. 
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Optical consideration 
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• For glass-air-glass some of the wave will be reflected and some will be transmitted 
 
Case 2: 0VE   
 
Classical Consideration 
 
• Particle will never get past 1zz   
 
• In region I: EK.E.  
 
• In region II: 0.. 0  VEEK

because 0VE  . This classically is not 

allowed 
 
Quantum Mechanical 
Consideration 
 
• There is finite probability that 
particle will be reflected and a 
finite probability that it gets 
through 
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• If 

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12  zz then the particle can be detected at 2zz  .  This phenomenon is called 

tunneling effect and corresponds to the evanescent wave being detected on the other side 
of the barrier. 
 
Optical Consideration 
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• Note that in the case of purely imaginary index, 22 nin   where 2n .  Then the wave 
vector in region II is purely imaginary 

222 n
c

in
c

k 



 .  This wave acquires no phase and 

will exponentially decay 

ti
zn

cti
zni

c
i

tizki eeeeee 





 
22

2
, 

which implies an evanescent wave similar to an 
electron tunneling through a potential barrier. 
 
• A good optical analogy is the case of waveguide 
operated below cutoff or an optical multilayer 
(photonic band gap material) excited in the gap. 
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Analogy with Cut off waveguide: 
 
• For wave guide we have 
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• Remark:  In this section I have used k  and   to designate the electromagnetic waves 
propagation vector and frequency. 
 
• If vvc   then zk is purely imaginary 
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