Optical electron Analogies

» We begin our discussion by revisiting the Schrédinger and Helmholtz’s wave equations
in their stationary state form. Recall that for the Schrédinger equation we had
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and that in the stationary state form the probability density |‘P(f,t)|2 = |¢(f12 is time
independent and we have a well defined energy E = 7w .
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* The —?—Vz +V(F)=H is called the Hamiltonian. With this the Schrédinger can be
m

written as

Hy(F) = E¢(r) (1)
* For a source free simple medium Helmholtz’s equation is given by
VE=-Q%ucE (2)
* (1) and (2) are eigenvalue equation.

« Note that V* and H are linear operator, i.e. for 4,4, e C

H [21¢1(r)+ /12¢(f)] = ﬂ’lH¢l(r)+ A,Hg, (f)
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. ih%‘l’(ht) = %vz\y(r,t)w(r)\}f(r,t) and V?E(F,t)- ue

evolution of W(F,t) and E(F,t), whatever the state of system. Hg(F)= E¢(r) and
V?E = —Q%us E give among all the possible states those that are stationary

=0 give the

» Comparing Schrédinger and Helmholtz equations in 1D we have

S @V a)-er= | L v ) o

[dz Qn?

P+T}u(z)=0 (uis any scalar component of E or H)

» Comparing the two equations we can make the following correspondence

Q’n®>  2m (E-V)=n= J2mc’(E-V)
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. 2m(E-V :
with k, = S representing the electron wave vector.

Index and Potential Profiles

* If dimensions over which potential or index of refraction vary rapidly is much smaller
than the wavelength of consideration, the potential or index can be considered
approximately discontinuous

—» AZ i—

A
v

A AZ << A

Classical, Quantum Mechanical and Optical Analogies

Potential step:

Case 1: E>V, V=V,

Classical Consideration:
Total energy is conserved V=0

(total energy = E) @ =4 @ — z

eInregionl: P.E.+KE =E = K.E.=E >0. This is classically allowed

e Inregion ll: P.E+K.E.=E=K.E.=E-V, >0, since E >V,. This also is classically
allowed

* Our experience tells us that as the particle moves from region | to region 11, it does not
turn around (reflect) or crash.

Quantum Mechanical Consideration

* In quantum mechanics even though E >V, there is a finite probability that the electron
will be reflected and a finite probability that it will clear off the barrier at z = z;



* In region I: klzw/Z;n—zEeiR since E>0

2m(E -V,)

* Inregion Il:k, = 2 eR since E >V,

» The wave functions in regions | and Il are T RGO E
then given by ‘P, oc €"’e " and e \NA\» e N\ IRy
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¥, oc e"’e ' respectively. They are _
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traveling waves. W

Optical Consideration @ L=1 @ — 7z

* Recall n = iq/chz(E ~V)
hQ

eInregionl: V=0=n, _ L omc’E ew
hQ

e Inregion Il: V =V, and

1 Glass, n,
E>V,=n, :h—Q,/zmcz(E ~V,)eR

* From the above we conclude n, < n,. The situation is
depicted in the figure. Note the similarity between
optical and quantum mechanical considerations. We
have incident, reflected, and transmitted waves. Incident

Reflected

Air,n,

Transmitte

Case 2: E<V, ®

Classical Consideration: @ 1=1 @ - 7

* As our particle encounters the
potential barrier it will reflect.

* In Region I: K.E.+ PE=E=KE=E>0. This is classically allowed.
0



* InRegion II: KE.+P.E;=E = KE.=E -V, <0since E <V,. This is not classically

Vo

allowed. Recall K.E. = %mv2 and hence always positive.

Quantum Mechanical Consideration

* In quantum mechanics there is a ) V =V
finite probability for the electron to e” \/\,» - °
be reflected and there is a finite TUANA TS AN O
probability that it will cross the V=0 W € € /W

barrier at z = z,and can be found at z=1, > 7
some z >z, @ @

* Note that classical physics will not allow the electron to be found in z > z,.

*Inregion I: k, = Z;;E €N since E>0
« In region 11: k, :\/2m(§2_v") = i\/zm(\;"z_ E)_ i where a = 2m\)/‘1+—E eR.

Note that in region Il V, > E .

ikjz j—icot
 The wave functions in regions I and Il are then given by ‘“Pl =ee” and
i(laz)q—lot —az —iawt
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evanescent
wave

Optical Consideration @ @
1 Air Metal
Recall n=—.2mc?(E-V) =

nQ
n =hiQ\/2mc2E e Rsince E>0 and W%v\

_ 1 ome(E—v) = omet(v —E)
nz_m,/zmc (E vo)_hQ 2mc?(v, - E). n, N,

n, is purely imaginary

z=1,

» Medium | can be thought of as a good
dielectric, e.g. air. Medium Il can be thought of as an ideal metal



* This analogy should not be taken too far, since real metal has both real and imaginary
parts of the index. Hence, we have a traveling attenuated wave and not a purely
evanescent wave.

Potential Barrier

* Here we replace our previous step potential with a potential barrier (finite in extent).
The effects of evanescent waves are more pronounced in the case of potential barrier

Case 1: E>V,

Classical Consideration: ®  rmmmroemmmomoooeooooooooooooooes E

* The treatment is similar to

the case of E >V, for @ @ @
potential step. Particle V=0
moves from | to 11 to IlI Z, Z,

without being reflected
(crashing)

v
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» K.E.is positive in all the three regions and is reduced in region Il since K.E.= E -V,

Quantum Mechanical Consideration:

* Treatment is similar to the case of potential
step. Particle moves from I to Il to lll but ~~ —--emmomr e E

there is a finite probability for it to reflect at e /\/\/» e /W e /\/\/*

z,0r z,, and a finite probability to be

transmitted through. 4\/\/\ e
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Optical consideration

on = hiQ 2mc’E e Rsince E >0 Reflecte

n, :hiQ,IZmCZ(E—VO)e*J%sinceE>V0 >

Incident




n,>n,
* For glass-air-glass some of the wave will be reflected and some will be transmitted

Case 2: E<V,

Classical Consideration

* Particle will never get past z =z, @ @ @

eInregionl: KE.=E V=Y
*Inregion ll: KE.=E-V, <0

. . . V=0—"T-"-— —
because E <V, . This classically is not z, z,

allowed

Quantum Mechanical

Consideration -
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* There is finite probability that ~— ____________ | .

particle will be reflected and a « N\ e | « NN e

finite probability that it gets V=0

through @ Z,
*Inregion I: k, = ‘/Z;In_zE eRsince E>0

2m(E-V,) . [2m(V,-E)
h? _'\/ h?

* In region I1: k, :\/ =ia since E <V,

Y, c e W, oce e, P, o e™e ' with k, =K,

1 , . :
* If z, — z, ~ —then the particle can be detected at z > z,. This phenomenon is called
(24

tunneling effect and corresponds to the evanescent wave being detected on the other side
of the barrier.

Optical Consideration

-nlzi 2mc’E e R E>0
nQ

n, = %JchZ(E -V,)= %JchZ(VO —E), where n, is purely imaginary and n, =n,



* Note that in the case of purely imaginary index, n, =in, where n, €‘R. Then the wave

vector in region Il is purely imaginary

Q . Q) . .
k, =—n, =i—n,. This wave acquires no phase and
c c
will exponentially decay
iQi n, z Q n, z
ik, z o2 ¢ 2 a-i0t IR (0
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which implies an evanescent wave similar to an
electron tunneling through a potential barrier.

* A good optical analogy is the case of waveguide
operated below cutoff or an optical multilayer
(photonic band gap material) excited in the gap.
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Analogy with Cut off waveguide:

* For wave guide we have yA
2
k? =k, +k,” +k,> where k? = 2 (the
c
waveguide is filled with air).
Nz)° >
 From boundary conditions, kx2 = (7) : , «—» X
Mz )’ :

ky :[Tj with M,N =0,1, 2...but not zero
simultaneously.

Nz\ (Mz)
* Define kc2 =k? —kz2 = kx2 + ky2 — (_j +(_j

a b
- Then k2 =k? —(k,? +k,* )= k? —k,?
k. = cutoff wave number

2 2 2 2

« We can write k> = aécz = (ZZVCJ and k* = % = (?j where w,or v, are cutoff

frequency. Then

2 2 2 2
k2=k?—k’ =2 -2 =(2’“’j _(27er) —k, =2 v . If v>v_then K, is

c- cC C c
purely real.

» Remark: In this section I have used k and @ to designate the electromagnetic waves
propagation vector and frequency.

* If v, >V then k,is purely imaginary

K, :27”1/—1ivc —v) = iZT”JVc -V =ia'where o' =2T7r,/vC -V



