
Set of square-integrable function 2L : function space F  
 
Motivation:  
 
• In our previous discussions we have seen that for free particles wave equations 
(Helmholtz or Schrödinger) can be expressed in terms of eigenvalue equations.  
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• This approach is more universal than the simple example given above. For example, 
in the case of inhomogeneous but linear and isotropic medium such as photonic crystals 
the wave equation governing  rH


 and  rE


 can be written as 
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, where   and   are operators to be 

determined (HW). 
 
• In finding solutions to these eigenvalue equations one often has to expand the wave 

function  r
  ( , H


, E


) in terms of other functions.  Technically, this is called 
projecting or expanding the wave function into a given function space.  You have 
already seen an example of this method in our discussion of wave packet and its spectrum 
decomposition. 
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• In what follows we study the general properties of the function space, operators, and 
bases. 
 
• If wave function  tr,  is square integrable then 

   32
, drtr


        (1) 

 
• If (1) is satisfied then we can always choose a multiplicative constant for  tr,  such 
that  

   1, 32
drtr


        (1′) 

 
• If  tr ,


  satisfies (1) or (1′) we say  tr ,


  is square-integrable. 

 
• The set of square-integrable functions in mathematics is called 2L set. 
 



• 2L  set has the structure of Hilbert space. 
 
• We also assume that our wave packet  tr ,


  possess some regularity.  For example, 

we require that  tr ,


  be defined everywhere, be continuous everywhere, and 
differentiable. 
 
• Assigning the above physical meanings and constraints to  tr ,


  implies that 2L set is 

too wide for our purposes. 
 
• We define the function space f as a subset of 2L ;  2Lf   composed of sufficiently 
regular functions. 
 

Linearity of function space f  
 
• Let    fr 


1  and    fr 


2  then      frr 


2211   where 1 and 2 are in 

general complex;  C21 , .  (HW) 
 

Inner Product of Two Functions 
 
• The inner product of two functions  and  is defined by  

       3, drrr
         (2) 

 
• The following can be shown to be true (HW) 
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• Note that while           Cdrrr 3,

   (is a complex number), for    we 

have              323, drrdrrr
   (is a positive real number) 

 

•   ,  is called the norm of  . 

 

•       ,,,  is the square of the norm 

 
• If   00,   .  If   0,   we say  and  are orthogonal. 
 



Schwartz Inequality 
 

     


21  of norm
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 of norm
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  . The Equality applies when 21    

 

Operators 
 
• Operator A  is a mathematical entity which associates with any    fr 

  another 

function  r
  that may or may not belong to  f  

   rrA
           (1) 

 
• Followings are examples of the operators 
Parity  :     zyxzyx  ,,,,   

Position X :    zyxxzyxX ,,,,    

Differential xD :    zyx
x

zyxDx ,,,, 



  

 
• Linear operator is such an operator that satisfies the following: 

        rArArrA


22112211    

Where  C21 ,  
 

Commutators of two operators 
 
• We define:      rBArBA

   .  In general ABBA   
 
• The commutation of A  and B  is defined as   ABBABA , .  Show that 

commutator operator for X and xD is 1 . 

 
• You can think of  r

 as a vector and operator A  as a matrix. 
 

Bases in vector function space 
 
Discrete basis: 
• Consider the countable set of functions   rUi


,  ,,,2,1 ni  , where  fUi  .  iU  

is square integrable. 
 



• The set   rUi


 is orthonormal if       ijjiji drrUrUUU   3**,


, where ij  is the 

Kronecker delta with 1ij  for ji  , 0ij  for ji   

 
• If every function    fr 

  can be expanded in one and only one way in term of 

 rUi


, given by  
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then we say the set   rUi


 constitute a basis. 

 
• When   rUi


 constitute a basis, we sometime say that   rUi


 is a complete set of 

functions. 
 
• Note that from (1),  r

  is completely represented in the   rUi


 basis by its 

coefficients of expansion, i.e. ic . 

 

Coefficients of Expansion iC  

 
• The coefficients of expansion ic  are given by (HW) 

       rrUdrUc iii

  3,        (2) 

 
• In words, the coefficients of expansion are the inner product of the wave function 
 r
  and the bases functions. 

 
• Clearly the coefficients of expansion for  r

  on the basis   rUi


 are in general 

different from the coefficients of expansion for  r
  on another basis   rUi

 , i.e. 

ii cc  , even though  r
  is the same wave function. 

 
• While a wave function  r

  can be expressed on a basis   rUi


 in terms of series of 

complex number (coefficients of expansion, ic ), the operator A  also can be expressed 

on the basis   rUi


 in terms of series of numbers arranged in the form of a matrix. 

 

The inner product of two wave functions  r
  and  r

  in 
terms of their coefficients of expansion 
 
• Let    fr 

  and    fr 
  be expressed on the basis   rUi


 according to 
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• For    then     

i
i

i
ii ccc

2
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• One may draw analogies between basis functions   rUi


 and unit vectors in 

Cartesian coordinate  iê .  For example, in Cartesian coordinates we have the basis 

vectors  zyxi eeezyxie ˆ,ˆ,ˆ,,,ˆ  .  Then note the following analogies: 

 
Basis functions  Unit vectors in Cartesian coordinates 
  ijji UU ,     ijji ee  ˆˆ ; zyxji ,,,   
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Closure relation 
 
• We have already seen the orthonormality condition for any two basis functions, i.e. 

    ijji drrUrU   3
. 

 
• We now establish a condition under which set   rUi


 constitutes a basis; this 

condition is called closure relation. 
 
• For   rUi


 to be a basis (a complete set) we must be able to expand any function 

 r
  in the base, i.e. 
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Interchanging   and  we have 

          

i
ii rUrUrdrr
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For (3) to be true     

i
ii rUrU


 must have the form    rrrr
    

 
• Therefore, the closure relation can be written as  

       rrrUrU ii

   (Closure relation)     (4) 

 
• Conversely if (4) is satisfied (1) is always true, because  

               

i
ii rrUrUrdrrrrdr

  33 .    (5) 

Interchanging  and  order and following the above procedure in reverse we will 

obtain    
i

ii rUcr
 . 

 

Summary 
 
• Orthonormality condition is given by        

ijjiji rUrUdrUU 3,  

 
• Closure relation is given by        rrrUrU ii

   

 
• Note orthonormality involves bases with different indices i  and j , but the same 

argument  r


; however closure involves bases with the same index i , but different 
arguments r


 and r

 . 
 

Bases that do not belong to the function space f : 
(bases that are not square-integrable) 
 
• So far we have studied bases that were square-integrable, i.e.    frUi 


, here we 

relax this condition and consider bases that 2L .  We will generalize our results for 
expanding the wave function  r

  on such bases and will find the coefficients of 
expansion, the orthonormality, and closure conditions. 



 
• We start our study with the familiar case of Fourier transform and plane wave basis. 
 

Bases of Plane Waves and Fourier Transform – The One 
Dimensional Case 
 
• Consider the well known Fourier pair 

    dkekx ikx
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• Functions  
2

ikx

k

e
xV   (plane waves) form a set   xVk  for which the index k is 

continuous. 
 

• Note that integral of  
2
12 xVk over x  diverges   xVk  is not square-integrable.  

Also whereas for   xUi , i  was discrete for   xVk , k is continuous. 

 

Expansion of wave function  x  on  






 xkV  basis 

 
• We write (1) and (2) as 

         dkxVkdkekx k
ikx 
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• Comparing the above continuous basis with our previous discrete basis we see 
      dkxVkx k        
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ii xUcx  and 

      ,kk VdxxVk                 ,iii UxxUdxc  

 
•  k  is the coefficient of expansion for  x  in the   xVk  basis.  This coefficient of 

expansion can be found from the inner product of   and the basis functions kV . 

   ik UV   

   



k continuous  i discrete 

Norm (square of the norm) of the function  x  

• Recall        dxxx  ,  

 
• From Parseval’s theorem (HW) it can be shown 

              
 dkkdkkkdxxdxxx

22
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• Compare     dkk
2

,   with   
i

ic 2,  for discrete basis. 

Orthonormalization 
 
• For the basis   xVk  the orthonormalization is given by (HW) 

       kkdxxVxVVV kkkk   


 ,  

 
• Compare this to       ijjiji dxxUxUUU   ,  for   xUi  basis. 

 
• Orthonormalization for   xVk  results in Dirac-Delta function where as for   xUi  

basis it results in Kronecker delta function. 
 
• Note that 

        
 kkVVkkVV kkkk  ,,  

       kkkkkk VVVVkkVV ,,,     

 

Closure relation for 






 )(xkV  

 
• For  kV  it can be shown that closure relation is given by (HW) 

     xxdkxVxV kk    . 

Since       xxxxxx     then we can write 

           xxxxdkxVxVdkxVxV kkkk      (Closure relation) 

 
• Compare the      xxdkxVxV kk     for continuous basis with 

     xxxUxU
i

ii     for discrete basis. 

 



Extension to Three Dimensions 
 

• In three dimensions the plane wave basis is given by   rVk


where  
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• Expansion of the wave function is given by 
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• Coefficients of expansions are 
       rrVdrVk kk


  3,  

 
• Inner product is given by 

         
  33, dkkkdrrr

   

 
• Orthonormality condition is given by 

       kkkkVVVV kkkk


  ,,  

 
• Closure condition is given by 

           rrrrdkrVrVdkrVrV kkkk
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Delta functions as basis 
 
• Using the properties of Dirac-Delta function we have 
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Where 0r


 stands for  000 ,, zyx  and r


 for  zyx ,,  and 
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• Let us define basis   rr
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Compare these results with    
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Coefficients of Expansion 
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• Note that coefficients of expansion for  r

  on the basis   rr


0

  are the values of 

 r  at each point in space. 
 
•  0r

  is similar to ic  but where 0r is a continuous index for   rr


0

  basis, i is a 

discrete index for   rUi


 basis. 

 

Inner Product for   rr
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  .  Note this is in fact the definition of the inner product.  

Compare the above to    
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Orthonormality 
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   .  Compare this to 

      ijjiji drrUrUUU    3,


 

 

Closure relation 
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Continuous orthonormal bases: generalization 
 
• We can generalize our results obtained for   rVk


 and   rr


0

  by introducing the 

continuous orthonormal basis   rW


  which is a set of function  rW


  labeled with 

the continuous index  .  The basis   rW


  will satisfy the following 

 
Expansion of wave 
function 
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Scalar product       cbd  3,       ii cb ,  

Square of the norm     23,  cd     
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Orthonormalization 
relation 
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