
Set of square-integrable function 2L : function space F  
 
Motivation:  
 
• In our previous discussions we have seen that for free particles wave equations 
(Helmholtz or Schrödinger) can be expressed in terms of eigenvalue equations.  
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• This approach is more universal than the simple example given above. For example, 
in the case of inhomogeneous but linear and isotropic medium such as photonic crystals 
the wave equation governing  rH


 and  rE


 can be written as 
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, where   and   are operators to be 

determined (HW). 
 
• In finding solutions to these eigenvalue equations one often has to expand the wave 

function  r
  ( , H


, E


) in terms of other functions.  Technically, this is called 
projecting or expanding the wave function into a given function space.  You have 
already seen an example of this method in our discussion of wave packet and its spectrum 
decomposition. 
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• In what follows we study the general properties of the function space, operators, and 
bases. 
 
• If wave function  tr,  is square integrable then 

   32
, drtr


        (1) 

 
• If (1) is satisfied then we can always choose a multiplicative constant for  tr,  such 
that  

   1, 32
drtr


        (1′) 

 
• If  tr ,


  satisfies (1) or (1′) we say  tr ,


  is square-integrable. 

 
• The set of square-integrable functions in mathematics is called 2L set. 
 



• 2L  set has the structure of Hilbert space. 
 
• We also assume that our wave packet  tr ,


  possess some regularity.  For example, 

we require that  tr ,


  be defined everywhere, be continuous everywhere, and 
differentiable. 
 
• Assigning the above physical meanings and constraints to  tr ,


  implies that 2L set is 

too wide for our purposes. 
 
• We define the function space f as a subset of 2L ;  2Lf   composed of sufficiently 
regular functions. 
 

Linearity of function space f  
 
• Let    fr 


1  and    fr 


2  then      frr 


2211   where 1 and 2 are in 

general complex;  C21 , .  (HW) 
 

Inner Product of Two Functions 
 
• The inner product of two functions  and  is defined by  

       3, drrr
         (2) 

 
• The following can be shown to be true (HW) 
    ,,   

     22112211 ,,,    

      ,,, 22112211
   

 
• Note that while           Cdrrr 3,

   (is a complex number), for    we 

have              323, drrdrrr
   (is a positive real number) 

 

•   ,  is called the norm of  . 

 

•       ,,,  is the square of the norm 

 
• If   00,   .  If   0,   we say  and  are orthogonal. 
 



Schwartz Inequality 
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  . The Equality applies when 21    

 

Operators 
 
• Operator A  is a mathematical entity which associates with any    fr 

  another 

function  r
  that may or may not belong to  f  

   rrA
           (1) 

 
• Followings are examples of the operators 
Parity  :     zyxzyx  ,,,,   

Position X :    zyxxzyxX ,,,,    

Differential xD :    zyx
x

zyxDx ,,,, 



  

 
• Linear operator is such an operator that satisfies the following: 

        rArArrA


22112211    

Where  C21 ,  
 

Commutators of two operators 
 
• We define:      rBArBA

   .  In general ABBA   
 
• The commutation of A  and B  is defined as   ABBABA , .  Show that 

commutator operator for X and xD is 1 . 

 
• You can think of  r

 as a vector and operator A  as a matrix. 
 

Bases in vector function space 
 
Discrete basis: 
• Consider the countable set of functions   rUi


,  ,,,2,1 ni  , where  fUi  .  iU  

is square integrable. 
 



• The set   rUi


 is orthonormal if       ijjiji drrUrUUU   3**,


, where ij  is the 

Kronecker delta with 1ij  for ji  , 0ij  for ji   

 
• If every function    fr 

  can be expanded in one and only one way in term of 

 rUi


, given by  
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then we say the set   rUi


 constitute a basis. 

 
• When   rUi


 constitute a basis, we sometime say that   rUi


 is a complete set of 

functions. 
 
• Note that from (1),  r

  is completely represented in the   rUi


 basis by its 

coefficients of expansion, i.e. ic . 

 

Coefficients of Expansion iC  

 
• The coefficients of expansion ic  are given by (HW) 

       rrUdrUc iii

  3,        (2) 

 
• In words, the coefficients of expansion are the inner product of the wave function 
 r
  and the bases functions. 

 
• Clearly the coefficients of expansion for  r

  on the basis   rUi


 are in general 

different from the coefficients of expansion for  r
  on another basis   rUi

 , i.e. 

ii cc  , even though  r
  is the same wave function. 

 
• While a wave function  r

  can be expressed on a basis   rUi


 in terms of series of 

complex number (coefficients of expansion, ic ), the operator A  also can be expressed 

on the basis   rUi


 in terms of series of numbers arranged in the form of a matrix. 

 

The inner product of two wave functions  r
  and  r

  in 
terms of their coefficients of expansion 
 
• Let    fr 

  and    fr 
  be expressed on the basis   rUi


 according to 
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• For    then     

i
i

i
ii ccc

2
,  

 
• One may draw analogies between basis functions   rUi


 and unit vectors in 

Cartesian coordinate  iê .  For example, in Cartesian coordinates we have the basis 

vectors  zyxi eeezyxie ˆ,ˆ,ˆ,,,ˆ  .  Then note the following analogies: 

 
Basis functions  Unit vectors in Cartesian coordinates 
  ijji UU ,     ijji ee  ˆˆ ; zyxji ,,,   
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Closure relation 
 
• We have already seen the orthonormality condition for any two basis functions, i.e. 

    ijji drrUrU   3
. 

 
• We now establish a condition under which set   rUi


 constitutes a basis; this 

condition is called closure relation. 
 
• For   rUi


 to be a basis (a complete set) we must be able to expand any function 

 r
  in the base, i.e. 



 
   




1i

ii rUcr
 , where  ,ii Uc  , then      (1) 

               

i
ii

i
ii rUrdrrUrUUr

 3,  .    (2) 

Interchanging   and  we have 

          

i
ii rUrUrdrr
 3 .       (3) 

For (3) to be true     

i
ii rUrU


 must have the form    rrrr
    

 
• Therefore, the closure relation can be written as  

       rrrUrU ii

   (Closure relation)     (4) 

 
• Conversely if (4) is satisfied (1) is always true, because  

               

i
ii rrUrUrdrrrrdr

  33 .    (5) 

Interchanging  and  order and following the above procedure in reverse we will 

obtain    
i

ii rUcr
 . 

 

Summary 
 
• Orthonormality condition is given by        

ijjiji rUrUdrUU 3,  

 
• Closure relation is given by        rrrUrU ii

   

 
• Note orthonormality involves bases with different indices i  and j , but the same 

argument  r


; however closure involves bases with the same index i , but different 
arguments r


 and r

 . 
 

Bases that do not belong to the function space f : 
(bases that are not square-integrable) 
 
• So far we have studied bases that were square-integrable, i.e.    frUi 


, here we 

relax this condition and consider bases that 2L .  We will generalize our results for 
expanding the wave function  r

  on such bases and will find the coefficients of 
expansion, the orthonormality, and closure conditions. 



 
• We start our study with the familiar case of Fourier transform and plane wave basis. 
 

Bases of Plane Waves and Fourier Transform – The One 
Dimensional Case 
 
• Consider the well known Fourier pair 

    dkekx ikx



2

1
        (1) 

     dxexk ikx



2

1
        (2) 

 

• Functions  
2

ikx

k

e
xV   (plane waves) form a set   xVk  for which the index k is 

continuous. 
 

• Note that integral of  
2
12 xVk over x  diverges   xVk  is not square-integrable.  

Also whereas for   xUi , i  was discrete for   xVk , k is continuous. 

 

Expansion of wave function  x  on  






 xkV  basis 

 
• We write (1) and (2) as 

         dkxVkdkekx k
ikx 




2

1
 with 

2

ikx

k

e
V  , and   (3) 

       


 ,
2

1
kk

ikx VdxxVdxexk         (4) 

 
• Comparing the above continuous basis with our previous discrete basis we see 
      dkxVkx k        




1i

ii xUcx  and 

      ,kk VdxxVk                 ,iii UxxUdxc  

 
•  k  is the coefficient of expansion for  x  in the   xVk  basis.  This coefficient of 

expansion can be found from the inner product of   and the basis functions kV . 

   ik UV   

   



k continuous  i discrete 

Norm (square of the norm) of the function  x  

• Recall        dxxx  ,  

 
• From Parseval’s theorem (HW) it can be shown 

              
 dkkdkkkdxxdxxx

22
,   

 

• Compare     dkk
2

,   with   
i

ic 2,  for discrete basis. 

Orthonormalization 
 
• For the basis   xVk  the orthonormalization is given by (HW) 

       kkdxxVxVVV kkkk   


 ,  

 
• Compare this to       ijjiji dxxUxUUU   ,  for   xUi  basis. 

 
• Orthonormalization for   xVk  results in Dirac-Delta function where as for   xUi  

basis it results in Kronecker delta function. 
 
• Note that 

        
 kkVVkkVV kkkk  ,,  

       kkkkkk VVVVkkVV ,,,     

 

Closure relation for 






 )(xkV  

 
• For  kV  it can be shown that closure relation is given by (HW) 

     xxdkxVxV kk    . 

Since       xxxxxx     then we can write 

           xxxxdkxVxVdkxVxV kkkk      (Closure relation) 

 
• Compare the      xxdkxVxV kk     for continuous basis with 

     xxxUxU
i

ii     for discrete basis. 

 



Extension to Three Dimensions 
 

• In three dimensions the plane wave basis is given by   rVk


where  

 
rki

k erV
  2/32

1


 

 
• Expansion of the wave function is given by 

 
 

        rVkdkdkekr k
rki  


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• Coefficients of expansions are 
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• Inner product is given by 
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• Orthonormality condition is given by 
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• Closure condition is given by 

           rrrrdkrVrVdkrVrV kkkk


   33  

 

Delta functions as basis 
 
• Using the properties of Dirac-Delta function we have 
     00

3
0 rrrdrr


          (1) 

and 
     rrrdrr


  0

3
0  .       (2) 

Where 0r


 stands for  000 ,, zyx  and r


 for  zyx ,,  and 

       0000 zzyyxxrr   
. 

 
• Let us define basis   rr
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• Note that   2
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Coefficients of Expansion 
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• Note that coefficients of expansion for  r
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Inner Product for   rr
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Orthonormality 
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Closure relation 
 

         rrdrrrrrdrrr rr

     3
000

3
000

.   

Compare this to      rrrUrU
i

ii

     

 



Continuous orthonormal bases: generalization 
 
• We can generalize our results obtained for   rVk
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