Set of square-integrable function L2: function spaceF

Motivation:

* In our previous discussions we have seen that for free particles wave equations
(Helmholtz or Schrodinger) can be expressed in terms of eigenvalue equations.

Hp(F)=E@(r), or V’E =~ ueE

« This approach is more universal than the simple example given above. For example,
in the case of inhomogeneous but linear and isotropic medium such as photonic crystals

the wave equation governing H(r) and E(r) can be written as
2

2
OH(F)= (%} H(F) and 2 E(F)= [%j E(F), where ® and Z are operators to be
determined (HW).

* In finding solutions to these eigenvalue equations one often has to expand the wave
function 1//(?) (¢,H ,E) in terms of other functions. Technically, this is called

projecting or expanding the wave function into a given function space. You have
already seen an example of this method in our discussion of wave packet and its spectrum
decomposition.

w(r,t)= (2;)3/2 TTTQ(E)eiﬁ.r—iwtdkxdkydkz = y(r)= (27:)3/2 TTTQ (E)eif-fdkxdkydkz
with g(k)= " fff w(r)e ™ dk,dk, dk,

* In what follows we study the general properties of the function space, operators, and
bases.

« If wave function ¥(r,t) is square integrable then

JJ.'[|T(F,t)|2dr3 <0 (1)

« If (1) is satisfied then we can always choose a multiplicative constant for ‘P(r,t) such
that

”ﬂ‘l’(?,t]zdr} =1 (lr)
« If W(F,t) satisfies (1) or (1) we say W(F,t) is square-integrable.

« The set of square-integrable functions in mathematics is called L’ set.



« L* set has the structure of Hilbert space.

» We also assume that our wave packet ‘P(F,t) possess some regularity. For example,
we require that ¥(F,t) be defined everywhere, be continuous everywhere, and
differentiable.

* Assigning the above physical meanings and constraints to ‘I’(F,t) implies that L*set is
too wide for our purposes.

« We define the function space f as a subset of L*; (f c L2) composed of sufficiently

regular functions.

Linearity of function space f

*Let y,(F)e{f} and w,(F)e {f} then /L(,//l( )+/12l//2( ) {f} where A, and A,are in
general complex; A4,,4, € {Q} (HW)

Inner Product of Two Functions

* The inner product of two functions ¢ and v is defined by

B.w)=[[[#"(F)w(F)dr )

The following can be shown to be true (HW)

v) =(y.¢)

(¢,
(¢ Ay, +ﬂz‘/’2) (¢a‘/’1)+lz(¢aWz)
(B4 + A0 w) = 24" (dw)+ 2, ()

« Note that while (4, ) =”_[¢* (F)y(F)dr’ e {C} (|s a complex number), for ¢ =y we
have (y/,t//):HIl//*( r)dr’ _Ijj|w F) dr® e {®} (is a positive real number)

. \/il//,l//i is called the norm of y .

= J(w,w)\/(w,w)is the square of the norm

“If (y,w)=0=>y =0. If (4,y) = 0 we say gand y are orthogonal.



Schwartz Inequality

(.} <9 )V(Ws,07,) - The Equality applies when , =y,

normof normof y,

Operators

« Operator A is a mathematical entity which associates with any y(F)e {f } another
function y' F) that may or may not belong to {f }

Ayp(r)=y/'(7) M

* Followings are examples of the operators
Parity IT: T y(xy.2)=y(-x-y.~2)
Position X : X y(x.y,2)=xy(xy,2)

Differential D, : D, w(x, y,z):aiy/(x, y,2)
— — X
* Linear operator is such an operator that satisfies the following:

Al (F)+ Ly, (F)] = 4 Ay (F)+ 4, Ay, (F)
Where 4,4, € {C}

Commutators of two operators

« We define: AB [p(F)]=A[Bw(F)]. Ingeneral AB=B A

» The commutation of A and B is defined as [A,E] =AB-B A. Show that
commutator operator for X and & is —1.

» You can think of y(F)as a vector and operator A as a matrix.

Bases in vector function space

Discrete basis:
» Consider the countable set of functions {U,(F)}, i=1,2,...,n,..., where U, e {f}. U,

is square integrable.



ij >

* The set {U,(F)} is orthonormal if U U U.[U r)dr’ =, where 0 1s the
Kronecker delta with 5; =1 for i =], 5” =0 fori# j

* If every function 1//(?) € {f } can be expanded in one and only one way in term of
U,(F), given by

=Zci U, (F), (1)

then we say the set {U,(F)} constitute a basis.

« When {U,(F)} constitute a basis, we sometime say that {U,(F)} is a complete set of
functions.

» Note that from (1), y(F) is completely represented in the {U, (F)} basis by its
coefficients of expansion, i.e. C;.

Coefficients of Expansion C;

* The coefficients of expansion c, are given by (HW)

¢ =Upw)=[[[dru; ) w(r) )

* In words, the coefficients of expansion are the inner product of the wave function
w(F) and the bases functions.

* Clearly the coefficients of expansion for y(F) on the basis {U,(F)} are in general
different from the coefficients of expansion for w/(F) on another basis {U/(F)}, i.e.

¢, # ¢/, even though w/(F) is the same wave function.

« While a wave function (F) can be expressed on a basis {U,(F)} in terms of series of
complex number (coefficients of expansion, C;), the operator A also can be expressed
on the basis {U,(F)} in terms of series of numbers arranged in the form of a matrix.

The inner product of two wave functions w(F) and ¢(F) in
terms of their coefficients of expansion

« Let w(F)e{f} and ¢(F)e {f} be expressed on the basis {U,(F)} according to



r :ZCiUi( and ¢(F) Zb U ), then

H{Zhe e,
=mzj:b; u; Zci U,dr’
= 22 []Jpie Ui, ) ar
_ sz:b}‘ci [[Ju;iE,(F)dr = sz:b}‘ci u,u)
=3 3 bie 6, = Yy, =
I

* For ¢ =y then (y,y)= ZC =2l

« One may draw analogies between basis functions {U,(F)} and unit vectors in
Cartesian coordinate {¢,}. For example, in Cartesian coordinates we have the basis
vectors €,,i=X,Y,Z= (e é ) Then note the following analogies:

X y’z

Basis functions Unit vectors in Cartesian coordinates
U.U))=s, S &€ =050,]=XY,2
lr//| =ZCiUi(r) < M = Zmlel
i=1 i=x,y,z
Ci:(uiaW) < m =¢ M
( Jl//):zbi*ci A MN:ZZ zzm jzzmini
1 J i

Closure relation

* We have already seen the orthonormality condition for any two basis functions, i.e.

[[Jur(®)u,(F)dr =5,

« We now establish a condition under which set {U,(F)} constitutes a basis; this
condition is called closure relation.

« For {U,(F)} to be a basis (a complete set) we must be able to expand any function
w(F) in the base, i.e.



r :ZC- U,(F), where ¢, = (U,,y), then (D

w(r)=Z W)U ZUI [U; (®)w(r)dr |u, (). 2)
Interchanging Z and I we have
= [[p e S0 ) F). ®)

For (3) to be true > U, (7")U,(F) must have the form &(i"—7)=5(F — ')

* Therefore, the closure relation can be written as
> U,(F)U; ()= &(F - ') (Closure relation) 4)

« Conversely if (4) is satisfied (1) is always true, because

= [[[dr s - ()= dr Y U (F)U )y (). (5)
Interchanging Z and j order and following the above procedure in reverse we will
obtain y(F Zc U,(

Summary

« Orthonormality condition is given by Jﬂdr U ( F J;

» Closure relation is given by » U/ (F')U,(F)=6(F - )

* Note orthonormality involves bases with different indices i and j, but the same

argument (F); however closure involves bases with the same index i, but different
arguments r and r’.

Bases that do not belong to the function space{f |:
(bases that are not square-integrable)

« So far we have studied bases that were square-integrable, i.e. U,(F)e {f }, here we
relax this condition and consider bases that ¢ L>. We will generalize our results for
expanding the wave function l//(f) on such bases and will find the coefficients of
expansion, the orthonormality, and closure conditions.



» We start our study with the familiar case of Fourier transform and plane wave basis.

Bases of Plane Waves and Fourier Transform — The One
Dimensional Case

* Consider the well known Fourier pair

1 - ikx
W(X):ij(k)ekdk (D
. 1 —ikx
l//(k)=EIl//(X)e “dx )
ikx
« Functions V, (x) = F (plane waves) form a set {V, (x)} for which the index k is
Vs
continuous.

* Note that integral of M (X)|2 = ZLover x diverges =V, (x) is not square-integrable.
7

Also whereas for {U,(x)}, i was discrete for {V, (x)}, kis continuous.

Expansion of wave function y(x) on {Vk(x)} basis

* We write (1) and (2) as

ikx

w(x)= ﬁ [ (k) e dk = [ (K)V, (x)dk with V, = % and 3)
wlk)= [0 e = [V, w(x) x=(v,.p) @
« Comparing the above continuous basis with our previous discrete basis we see
w (%)= [w(k)V, (x) dk o wx)= ;Ci U,(x) and

w )=V w(x)dx=(V,,p) = = [dU ()yp()=U,p)

« (k) is the coefficient of expansion for y(x) in the {V, (x)} basis. This coefficient of

expansion can be found from the inner product of i and the basis functions V, .
Ve U}

J =X



k = continuous < i = discrete

Norm (square of the norm) of the function w(x)

» Recall ()= [y (x) w(x) dx
 From Parseval’s theorem (HW) it can be shown
()= [ (Qw(x) de =[x dx= [y (k) (k) dk = [l (k) ok

« Compare (1//,1//):”&( )( dk with Z|C| for discrete basis.

Orthonormalization

* For the basis {\/k( )} the orthonormalization is given by (HW)
(Ve.Vie) = [V (Ve () dx = 5 (k = k)

- Compare this to (U,,U ) = [U7 (x)U;(x) dx = &; for {U, (x)} basis.

* Orthonormalization for {\/k (X)} results in Dirac-Delta function where as for {Ui(x)}
basis it results in Kronecker delta function.

* Note that
ViV )=k =k')= V.V, ) =6"(k—k')=

(Vk’ Vi ) = 5(k - k’) = (Vk Vi ) = (Vk’ Vi )

Closure relation for {Vk(x)}

« For {\/k} it can be shown that closure relation is given by (HW)

IV "Ydk = 5(x - x').

Since [5(x —x')|" = 8(x - x") = (' — x) then we can write

[V )V ()dk = [V (x)V, (x)dk = 5(x = x) = 5(x' — x) (Closure relation)

- Compare the J'Vk (x)V, (x")dk = 5(x — x') for continuous basis with
> UL (x)U; (x') = 8(x — x) for discrete basis.



Extension to Three Dimensions

1 ik-r

« In three dimensions the plane wave basis is given by {V, (F)}where V, (F)=———e

» Expansion of the wave function is given by

)= gy ) e = oy o)
» Coefficients of expansions are

oK)= )= [TV, Fw F)

* Inner product is given by

6= [[Jo Opxr = [][¢ v ) ok

* Orthonormality condition is given by
(Vo Vi )= (Vv ) = 8k —K')= 5[k K)

. Closure condition is glven by
[[[Vi @)V () di = [[ v (F)V, (7)) dk? = 6(F )= 5(F - T)
Delta functions as basis

» Using the properties of Dirac-Delta function we have

= [[[dry () o(r -7,)

and
)= [[[dr* w(F)s(F, - 7).
Where I, stands for ( Xo»YosZ,) and F for (X, y,z) and

5(F_Fo):§(x_xo)5(y_ y0)§(2—20).

 Let us define basis {¢, (F)f where &, (F)=5(F-T,)

» Note that &, (F)e L

Expansion of Function w(F) on the Basis ¢ (F)

(27[)3/2

(D)

2)



w(r)=[[[drw(R,)5(F -T,) molr0 w(%) &, (F), where & (F)=o(F -T,).
Compare these results with l// ZC U (1)

Coefficients of Expansion

*='”‘J.dr31//” 5, —7) (r,) ”_[dr §r0 (ro )where
& (F)=5"(F-1)=6(F-1)= (

F) Compare these coefficients of expansion with
the discrete set c; —” dr* U (F)w(r)=U,,w)

- Note that coefficients of expansion for y/(F) on the basis {fro (F)} are the values of
w(r) at each point in space.

« w(r,) is similar to ¢, but where r,is a continuous index for {&, (F)f basis, iisa
discrete index for {U,(F)} basis.

Inner Product for & (F)}

(pv)= I”¢ (F,)w(r,)dr,’ . Note this is in fact the definition of the inner product.
Compare the above to ( Z b’c, .

Orthonormality

r)dr® = 6(F, — ;)= 6(F, —T,). Compare this to

Closure relation

[[[£, ()& (F)dr,’ _“jar r)o(r, —)dr,’ =5(F - 7).

Compare thls to ZUi U’ (F)= 5(F -7



Continuous orthonormal bases: generalization

» We can generalize our results obtained for {V, (F)} and {gro (F)} by introducing the
continuous orthonormal basis {W,, (F)} which is a set of function W, (F) labeled with
the continuous index « . The basis (W, (F)} will satisfy the following

Eﬁ?os;on of wave y(r)= [[[da’ c(a)W, (F) < l//(r):izci U,(F)

Cosficents o ofa)= W,.17)= [[[er” w. (") (1) S o =U)=J[[dr Ui E)w ()
Scalar product (#v)=[[[da’ b"(@) cl) < (py)=2b%

Square of the norm ()= [[{da” [e(ar) T )=kl

Orthonormalization (Wa»Wa') _ J‘J‘J‘dﬁwa (F)Wa,(F) _ 5(0{ _ a') & (U U )z 5
relation

Closure relation J'J' da* W, (F)W(F)=5(F - ') = ZUi(F)Ui*(F') =5(F-1)



