
Electric Anisotropy, Magnetic Anisotropy, Uniaxial and 
Biaxial Materials, Bianisotropic Media (Definitions) 
 
• A medium is called electrically anisotropic if ED

rr
⋅= ε , where ε  is the permittivity 

tensor.  Note that D
r

 and E
r

 are no longer parallel. 
 
• A medium is magnetically anisotropic if HB

rr
⋅= μ , where μ  is the permeability 

tensor.  Note that B
r

 and H
r

 are no longer parallel.   
 
• A medium can be both electrically and magnetically anisotropic. 
 
• Consider the case of electrically anisotropic medium for which 
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• Crystals, in general, are described by a symmetric permittivity tensor.  Then there 
always exist a coordinate transformation that transforms the symmetric matrix ε  to a 
diagonal matrix as given by 
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.  This new coordinate system is called the Principal System, and the 

three coordinate axes are called the Principal Axes.   
 
• For cubic crystal εεεε === zzyyxx , and the crystal is isotropic. 
 
• For tetragonal, hexagonal, and rhombohedral crystals two of the three ε  are equal.  
Such crystal is called uniaxial 
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• The principal axis that is different (displays the anisotropy) is called the optical axis.  
For the above z-axis is the optical axis.  For the above crystal, there is a two dimensional 
degeneracy. 
 
• If εε >zz  we say that the medium has positive uniaxial behavior, and if εε <zz  we say 
that the medium has negative uniaxial behavior. 
 



• If zzyyxx εεε ≠≠  we say that the crystal is biaxial.  Examples of biaxial crystals are 
orthorhombic, monoclinic, and triclinic.   
 
• A bianisotropic medium provides a coupling between electric and magnetic fields.  
The constitutive relations for a bianisotropic medium is given by 

HED
rrv

⋅+⋅= ξε  

HEB
rrr

⋅+⋅= μς  

 
• A bianisotropic medium placed in an electric or magnetic field becomes both polarized 
and magnetized. 
 
• Almost any media in motion becomes bianisotropic.  The first cases of bianisotropic 
materials were indeed moving dielectrics and magnetic materials in the presence of 
electric or magnetic fields. 
 
• In 1888 Roentgen discovered that moving dielectrics become magnetized when placed 
in an electric field.  In 1905 Wilson showed that a moving dielectric becomes 
electrically polarized when placed in a uniform magnetic field. 
 
• The topics of moving materials and their constitutive relations are the subject of the 
relativistic electromagnetic theory. 
 
• Special relativity requires that all physical laws to be characterized by mathematical 
equations that are form-invariant from one observer to the other, independent of the 
relative motions of the two observers.  That is to say that the physical laws remain form-
invariant under Lorentz transformation. 
 
• Maxwell’s equations are form-invariant; however, constitutive relations are only 
form-invariant when they are written in the bianisotropic form.  
 
 
Magnetoelectric Materials: Early History 
 
• Magnetoelectric materials were first proposed by Landau and Lifshitz [1957] and 
Dzyaloshinskii [1959].  They were first observed by Astrov in 1960 in anti-
ferromagnetic chromium oxide.  The constitutive relations proposed by 
Dzyaloshinskii was of the form 
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• Later it was shown by Indenbom [1960] and Birss [1963] that 58 magnetic crystal 
classes can exhibit magnetoelectric effects. 
 
• In 1948 Tellegen introduced a new element called gyrator which in addition to resistor, 
inductor, capacitor, and transformer was used to describe an electric network. 
 
• To realize this new element, Tellegen had imagined a new medium for which the 
constitutive relations were given by 

HED
rrv

⋅+⋅= ξε  and 

HEB
rrr

⋅+⋅= μξ  where 12 ≈εμξ . 

 
• Tellegen had assumed that the medium had permanent electric dipole ( pr ) and 
magnetic dipole ( mr ) that were anti-parallel to each other, such that an applied E

r
 which 

aligned the pr  also aligned the mr  or similarly an applied H
r

 which aligned the mr  also 
aligned the pr . 
 
• Tellegen also considered the general constitutive relations 

HED
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⋅+⋅= ξε  and  

HEB
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⋅+⋅= μς , 

and studied the symmetry properties by considering the energy conservation. 
 
 
Chiral Media 
 
• For chiral materials the constitutive relations are given by 
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where χ  is called the chiral parameter.  Examples of chiral materials are sugar 
solutions, amino acids, DNA, etc.  Chiral materials are bi-isotropic. 
 
 
Constitutive Matrices 
 
• The constitutive relations in the most general form are written as 



BcLEPDc
rrr

⋅+⋅=  and 

BcQEMH
rrr

⋅+⋅=  where c  is the speed of light in vacuum and QMLP and,,,  are 

33×  matrices which their elements are called the constitutive parameters.  Note that 
ML and  relate the electric and magnetic fields together.  When 0≠L  and 0≠M  the 

medium is called bianisotropic. 
 
• When there is no coupling between electric and magnetic fields, i.e. 0=L  and 0=M  

we have EPDc
rr

⋅=  and BcQH
rr

⋅= .  In this case the medium is called anisotropic.  If 

IcP ε=  and I
c

Q
μ

1
= , where I  is the identity matrix, then medium is said to be 

isotropic. 
 
• The relations BcLEPDc
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⋅+⋅=  and BcQEMH

rrr
⋅+⋅=  can be written as  
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Here EBC  is a 66×  constitutive matrix.  Above ( EBC ) is called E-B presentation. 

 
• The reason for choosing the above form is that constitutive relations written as (1) are 
form invariant under Lorentz transformation.  They are so called Lorentz-covariant. 
 
• ( )BcE

rr
,  and ( )HDc

rr
,  each form a single tensor in four dimensional space. 

 
• Other representations are also possible.  For example 
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, where they are called E-

H, D-B, or D-H presentation, respectively. (Exercise: Find the matrix elements for DBC  

in terms of QMLP and,,, ). 

 
Anisotropic Medium and KDB system 
 
• We consider Maxwell’s equations in a source free region 0,0 ==== ecii JMJ ρ

rrr
.  

The time harmonic Maxwell’s equations are given by  
BjE
rr

ω−=×∇ , DjH
rr

ω=×∇ , 0=⋅∇ B
r

, and 0=⋅∇ D
r

. 
 
• The assumption that there are no sources within a given region of space does not mean 
that there are no sources anywhere else.  In fact, if this was the case there will be no field 
anywhere.  We assume that fields are generated at a given point in space and now we 
are studying their dynamical evolution away from the source. 



 
• We have seen that for a plane wave ( )rkj rr

⋅−exp  we have 
BEk
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ω=× , DHk
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ω−=× , 0=⋅ Bk
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, 0=⋅Dk
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.  From the last two equations we see 
that k

r
 is perpendicular to the plane containing both D

r
 and B

r
.  Let us call this plane, 

the D-B-plane.  If HB
rr

μ=  (μ , is a scalar function) then H
r

 also lies in the D-B-plane. 
 
• For a medium with ED

rv
⋅= ε  we see that E

r
 may not lie on the D-B-plane.  For this 

reason in anisotropic medium we define the polarization in terms of D
v

 instead of E
r

. 
 
• Recall that Poynting vector and hence the power flow is along ( ) ( )trtr ,, rrrr

HE × , which 
is not necessarily in the same direction as the propagation vector k

r
 inside an 

anisotropic medium.  In other words, the direction of power flow for a plane wave 
inside an anisotropic medium is not necessarily the same as the direction of the wave 
vector.  
 
KDB Coordinate System 
 
• To make our study of anisotropic medium easier we will transform our xyz coordinate 
system to the KDB coordinate system.  Whereas 
the unit vector in xyz are zyx aaa ˆ,ˆ,ˆ , in the KDB 
we designate them by 321 ˆ,ˆ,ˆ eee . 
 
• We will take the k

r
 to be along 3ê , i.e. 3êkk =

r
. 

From the figure we can see 
θφθφθ cosˆsinsinˆcossinˆˆ3 zyx aaae ++= . 

 
• 1̂e  lies in the x-y-plane and is perpendicular to 
the projection of 3êkk =

r
 to the x-y-plane.  It is 

given by  
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• 2ê can be calculated from ⇒×= 132 ˆˆˆ eee  

θφθφθ sinˆsincosˆcoscosˆˆ2 zyx aaae −+=  
 
• KDB system can be obtained from the xyz system by multiple rotations. 
 
 



Transforming a Vector From xyz to KDB and Vice Versa 
 
• Let the vector A

r
 in xyz system to be given by  
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• Exercise: Show that indeed T  is given by above and calculate 1−T . 
 
 

Constitutive Relations in the KDB system:  The DBC  
Formulation 
 
• Recall that in xyz system the DBC  formulation of constitutive relations was given by 
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With the help of transformation kATA
rr 1−= , T , and 1−T  we will find the equivalent 

relations in the KDB system. 
 
• Note that in the KDB system the D

r
 and B

r
 will take a simpler form than E

r
 and H

r
 

since 033 == BD  [recall 3êkk =
r

]. 
 
• In long hand (1) can be written as 

BDE
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⋅+⋅= χκ           (2) 

BDH
rvr

⋅+⋅= νγ          (3) 

 
• Using the fact that kETE

rr
⋅= −1 , kDTD

rr
⋅= −1 , kBTB ⋅= −1r

, and kHTH
rr

⋅= −1  (2) and 
(3) can be written as 
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⋅⋅+⋅⋅=⋅ −−− χκ       (4) 

)()( 111
kkk BTDTHT
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⋅⋅+⋅⋅=⋅ −−− νγ .      (5) 

Multiplying (4) and (5) with T  and rearranging terms we have 
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• The last two equations can be written as  

kkkkk BDE
rvr

⋅+⋅= χκ  

kkkkk BDH
rvr

⋅+⋅= νγ  

where the definition of kκ , kχ , kγ , and kν  are evident. 
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Dispersion Relation for Bianisotropic Medium 
 
• In the KDB system similar to xyz system we have 
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ω−=× ,        (2) 

 0=⋅ kBk
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 0=⋅ kDk
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• From (3) and (4) and since in KDB, 3êkk =
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 then 
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• From (1) 
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• Now recall that 
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2121112121111 BBDDE χχκκ +++=  and       (1) 

2221212221212 BBDDE χχκκ +++=       (2) 
 
• Using (1) and (2) in 21 BEk ω=  and 12 BEk ω=−  we have 

22121112121111 ][ BBBDDkEk ωχχκκ =+++=  and    (3)  

12221212221212 ][ BBBDDkEk ωχχκκ =+++−=−     (4)  
 
• (3) and (4) can further be written as  

212111212111 )( BkBkDkDk χωχκκ −+−=+  and     (5)  

222121222121 )( BkBkDkDk χχωκκ −+−=+      (7) 
 
• (5) and (7) can be given in matrix form according to 
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• Dived both side of (8) by k  and let 
k

u ω
= , we have 
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• We arrived at above by using kk BEk

rrr
ω=×  and kkkkk BDE

rvr
⋅+⋅= χκ .  We do the 

same steps but now with kk DHk
rrr

ω−=×  and kkkkk DBH
vrr

⋅+⋅= γν  to arrive at 
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• Now, (9) and (10) can be used to eliminate the D

r
 or B

r
.  For example, let us eliminate 

the B
r

 by using (10). We have 
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• The above can be finally written as 
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• For above equation to have nontrivial solutions the determinant of the matrix 

multiplying ⎥
⎦

⎤
⎢
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 must be zero.  This condition will provide us with the required 

dispersion relation. 
 
• Exercise: Find (recover) the dispersion relation for an isotropic, homogeneous medium 
characterized by kkk DE

vr
⋅= κ  and kkk BH

rr
⋅=ν  from our previous discussion.  


