A. Duality Theorem:

» Consider the following equations as an example
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» As we compare equations in the first column with those in the second column we note
that these equations (and many others in EM theory) have similar mathematical

constructs. For example, the vectors E, and H_, or vectors A and F occupy similar
position. In this sense we say E, and H, or A and F are dual of each other.

* Duality can be used to form a solution for a given variable if we know the solution for
the dual variable.
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B. Reciprocity Theorem:

* In circuit theory reciprocity states: in a physical linear network the position of an ideal
voltage source and an ideal voltmeter can be interchanged without affecting their reading.

* Reciprocity in electromagnetic theory comes about from Maxwell’s equations and has
many useful applications. For example, it relates the receiving and transmitting
properties of a radiating element (antenna.)

* Consider a linear, isotropic, but not necessarily homogeneous medium in which there

—

exist two sets of sources (51, Ml) and (52, Mz). At a given frequency o, (Jl, Ml)

produce the fields (El, qu) and (52, |\7I2) produce the fields (Ez, Hz).
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» Each of the fields must satisfy the corresponding Maxwell’s equations.
VxE, =-M, - jou H, (1) VxE,=-M, - jou H, (3)
VxH, =J, + joe E (2) VxH,=1J,+ joes E, 4)

« Multiply (1) by H, and (4) by E,, then

|:lz'(VXEl) :_Ml'HZ_ jou Hl‘ﬁz (5)
El'(vxﬁz):jz'él+ng El'Ez (6)

* Subtracting (5) from (6),we have

E,-(VxH,)—H,-(VxE)=1J,-E, + joc E,-E, +M,-H, + jou H, - H,. 7)
From the vector identity

B-(VxA)—A-(VxB)=V-(AxB)=-V-(BxA), (8)
(7) can be rewritten as

~V-(E;xH,)=J,-E,+ joc E,-E, +M,-H, + jou H, -H,. 9)

« In the above we have used Egs. (1) and (4). If we now multiplying (2) with E, and (3)
with H,, we have

E,-(VxH,)=E,-J,+ jo¢ E,-E, (10)
H,-(VxE,)=-H,-M, - jou H,-H, (11)

*Following steps similar to those described above we will have
~V-(E,xH,)=J,-E,+ jos E,-E,+M,-H, + jou H,-H, (12)

* Finally we will subtract (12) from (9)
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* Equation (13) is the Lorentz reciprocity theorem in its differential form. Note that in
(13) if we let 1 — 2 and 2 — 1 nothing will change.

* In integral form (13) can be written as

- ﬁv-(élxﬁz)-as—gv-(ézxH*l)-as}
: ; (14)
[[[@,-E~3,-E,+M,-H,-M,-H) dv

« Consider a region of space in which there are no sources J, = J, = M, = M, =0, then
(13) and (14) will be given by

v'(Elxﬁz):V'(szﬁl) (15)
ﬁélxl:lz-aS:ﬁﬁzxﬁl-as (16)

*As an example, consider inside a waveguide in which two modes co-exist, (El, Hl), and

(EZ, I—Tz). For expressions of the two modes to be valid E,, H,, E,, H, must satisfy (15)
and/or (16).

C. Green’s Function

* In EM theory we investigate the solutions to Maxwell’s equations which are often
expressed in terms of uncoupled differential equations subject to given boundary
conditions and various excitations.

* The use of Green’s function techniques is then to obtain solutions for these differential
equations subject to Dirac delta (impulse) excitations. The solution to the actual
excitation is then written as a superposition of these impulse responses (what we now call
Green’s functions) with the Dirac delta excitation at different locations. This
superposition in the limit can be represented as an integral. In this sense we see that
Green’s function is nothing more than what in Engineering we call impulse response and
in system theory is called transfer function.

» The Green’s function can be represented as a finite function, an infinite series, or an
integral. In the case of infinite series, the Green’s function is presented as a sum of
orthonormal functions. The coefficient of expansion for this series depends on the
strength of the source and the eigenvalues associated with the functions (orthonormal
functions forming a base) depend on the boundary conditions. In the case of integral
representation of the Green’s function, the spectrum of the associated eigenvalues is
continuous.



* The above three presentations of the Green’s function, though different in form, will
produce the same final results in terms of the solutions to the underlying partial
differential equations being considered. The choice of a particular presentation for the
Green’s function depends on the actual source of excitation.

* Usually there is the same amount of work in obtaining the Green’s function for a
differential equation as there is in obtaining direct solutions. However, the benefit of the
Green’s function is in the fact that once it is found, the solutions of the differential
equations for any excitation (driving terms) can be easily obtained with the help of its
Green’s function.

Example of Green Function in Circuit Theory:

* To better understand the use of the Green’s function in the circuits consider the simple
RL circuit shown below

=

A M\w;ﬁ

'

3 L
viE) Lj Fig. 1

» We assume that the circuit is at rest for t <t’. At t =t’ the voltage source is turned on
for a very short period of time, At’, via an impulse of magnitude V,. For times

t > t'+ At', the excitation is again zero. The differential equation governing the behavior
of the current ,i(t), in the circuit is given by the following:

For t'+At'>t>t Ri(t) + L% =v(t) (C-1)
For t>t'+At Ri(t) + %:O, (C-2)

Where as stated above v(t) is an impulse function of magnitude V.

* Equation (C-1) represents the state of our circuit during the application of our impulse
function (Dirac delta function), and Eg. (C-2) represents the state of the circuit after the
application of our impulse function.

* Let us integrate (C-1) over the period of '+ At' >t >t' =

t+At t'+At t+AY

R ji(t)dt+Lj%dt= jv(t)dt (C-3) =



t+AY

R [i(t) dt+ LLi(t +At) —i(t)] =V, (C-4)

Where the RHS of C-3 comes about because v(t) represents a Dirac delta function of
duration At" and amplitude V.

» We assume that At’ is so short that during this excitation time i(t) is not too large in a
t+At
way that R ji(t) dt ~ 0.Figure below shows an exaggerated version of this scenario.
’

* Then (C-4) simplifies to
Li(t"+At) -it)]=V, (C-5)

» We now consider the solution to (C-2), i.e. the solution to R i(t) + L% =0 for

t >t'+At". The solution is given by
R t

i()=1,e - =1 e * for t >t +At'(C-6)

R
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« Since i(t) is continuous then i(t'+At) =1,e t

Using these results in (C-5) we have

R R
t'+At — (t'+At'
(t+At) V, L+

Lige = vy = 1=t (©-7)

Y Also from Fig. 2 we see i(t") =0.

* Then the solution i(t) is given by
0 for t<t'

i(t) = Ry (C-8)
VTOe L for t>t



» Now let us assume that the circuit is subjected to a series of impulse functions (Dirac
delta functions) each of duration At" and magnitude V,(i =0, 1, 2,..., N) occurring at

t=t({=0,1 2,..., N). The total response of the circuit is given by

0 for t<tg
R
- (t-t))
YO—eL for ty<t<t
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i Lel "4+ let for t/<t<t
i(t)=1{ L L ' ? (C-9)
NV R
Y et for t, <t<t/,
o L

* If we now assume that v(t) is a continuous arbitrary excitation, the excitation can be

presented as a series of impulse functions of various amplitudes centered at different time
intervals as described above. Then the results in (C-9) can easily be extended to this

continuous arbitrary excitation by Z —>I , 1.e., we have

)

t
i) = [v ) ¢ ——dt, or (C-10)
d
t
i(t) = j V(t)) G(t, t') dt’, where (C-11)
d
)
G, t)= € for t > t"is the Green’s function. (C-12)

* Equation (C-12) is our RL circuit Green’s function which is the circuit response to an
impulse function for t >t". Knowing the Green’s function as given by (C-12) the system
response to any arbitrary input v(t) can then be obtained from (C-11), i.e. via the

convolution of the input with the Green’s function.

* In the followings, since most of our formulations related to the Green’s function deals
with spatial coordinates we will rewrite (C-11) as

y(x) = T f(x) G(x, x) dx’ (C-13)

where y(x)is the output, f(x) is the input, and G(x, x') is the Green’s function.



Properties of Green Function:

» We state the following properties associated with the Green’s function without proving
them.
1. G(x, x") satisfies its corresponding differential equation except at x = x’.

2. G(x, x") is symmetric with respectto x and x'.

3. G(x, x') satisfies the corresponding differential equation boundary conditions.
4. G(x, x') iscontinuous at x = X',

5. G(x, x') is discontinuous at x = x".

Sturm-Liouville Differential Equation and Operator:

» Sturm-Liouville differential equation in one dimension is given by

ALCEAR ORI (c-14)
X dx

* (C-14) can also be written in the language of operators as
Ly=f(x), (C-15)

where L is the Sturm-Liouville operator given by

d d
g=&[p(x) &} ~ () (c-16)

* The importance of Sturm-Liouville operator (or differential equation) can be
appreciated from the following two facts.

 Any second order non-homogenous differential equation such as
2
A0 9Y By Y h e y=sm (C-17)
dx dx

can be transformed into Sturm-Liouville differential equation by finding the relations
between p(x), q(x),and f(x) with A(x), B(x),C(x),and S(x). (HW)

» Many of the governing differential equations in EM theory can be expressed in terms of
Sturm-Liouville differential equation.



Green’s Function for Sturm-Liouville Differential
Equation

* To start, we rewrite the Sturm-Liouville differential equation of (c-14) in a slightly
different way, i.e.

{ﬂp(x) ﬂ}—q(x) y}+ﬂr(x)y= () = (C-18)
X dx

L +2r()]y=f(X) (C-19)
Where, A is the eigenvalue (not to be confused with wavelength!)

* The Green’s function for Sturm-Liouville differential equation is a solution of the
following equation

i{wx) d—G} ~q()G+Ar()G=5(x-x)  (C-20)
dx dx

* The solutions to (C-20) over the domain (a,b) is given by

% Y, (X) for a<x<x
Bix.x) = | PEOWE)

&yz(x) for x'<x<b

p(X) W (x)

where W (X') = y,(x) y,(X") = ¥, (x) y;(x") is known as the Wronskin and
y,(x) and vy, (x) are the nontrivial solutions of the homogenous equation (C-18). y,(x")
and y,(x") are the derivatives of y,(x) and y,(x) with respect to their argument.

* Clearly in the above formulation we are assuming that solutions to the homogenous
differential equation of (C-18) are known.



