
A. Duality Theorem: 
 
• Consider the following equations as an example 
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• As we compare equations in the first column with those in the second column we note 
that these equations (and many others in EM theory) have similar mathematical 
constructs.  For example, the vectors AE

v
 and FH

v
, or vectors A

r
 and F

r
 occupy similar 

position. In this sense we say AE
v

 and FH
v

 or A
r

 and F
r

 are dual of each other.  
 
• Duality can be used to form a solution for a given variable if we know the solution for 
the dual variable. 
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B. Reciprocity Theorem: 
• In circuit theory reciprocity states: in a physical linear network the position of an ideal 
voltage source and an ideal voltmeter can be interchanged without affecting their reading. 
 
• Reciprocity in electromagnetic theory comes about from Maxwell’s equations and has 
many useful applications.  For example, it relates the receiving and transmitting 
properties of a radiating element (antenna.) 
 
• Consider a linear, isotropic, but not necessarily homogeneous medium in which there 
exist two sets of sources ( )11, MJ
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 and ( )22 , MJ

rr
.  At a given frequency ω , ( )11, MJ
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 produce the fields ( )22 , HE
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• Each of the fields must satisfy the corresponding Maxwell’s equations. 
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• Multiply (1) by 2H

r
 and (4) by 1E

r
, then 
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• Subtracting (5) from (6),we have  
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• In the above we have used Eqs. (1) and (4).  If we now multiplying (2) with 2E

v
 and (3) 

with 1H
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, we have 
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•Following steps similar to those described above we will have 

2112212112 )( HHjHMEEjEJHE
rrrrvrrvrr

⋅+⋅+⋅+⋅=×⋅∇− ωμωε    (12) 
 
• Finally we will subtract (12) from (9) 
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• Equation (13) is the Lorentz reciprocity theorem in its differential form.  Note that in 
(13) if we let 21→  and 12 →  nothing will change. 
 
• In integral form (13) can be written as 
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• Consider a region of space in which there are no sources 02121 ==== MMJJ

rrrr
, then 

(13) and (14) will be given by 
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•As an example, consider inside a waveguide in which two modes co-exist, ( )11, HE

rr
, and 

( )22 , HE
rr

.  For expressions of the two modes to be valid 2211 ,,, HEHE
rrrr

 must satisfy (15) 
and/or (16). 
 

C. Green’s Function 
 
• In EM theory we investigate the solutions to Maxwell’s equations which are often 
expressed in terms of uncoupled differential equations subject to given boundary 
conditions and various excitations.  
 
• The use of Green’s function techniques is then to obtain solutions for these differential 
equations subject to Dirac delta (impulse) excitations. The solution to the actual 
excitation is then written as a superposition of these impulse responses (what we now call 
Green’s functions) with the Dirac delta excitation at different locations. This 
superposition in the limit can be represented as an integral. In this sense we see that 
Green’s function is nothing more than what in Engineering we call impulse response and 
in system theory is called transfer function. 
 
• The Green’s function can be represented as a finite function, an infinite series, or an 
integral. In the case of infinite series, the Green’s function is presented as a sum of 
orthonormal functions. The coefficient of expansion for this series depends on the 
strength of the source and the eigenvalues associated with the functions (orthonormal 
functions forming a base) depend on the boundary conditions. In the case of integral 
representation of the Green’s function, the spectrum of the associated eigenvalues is 
continuous.  



• The above three presentations of the Green’s function, though different in form, will 
produce the same final results in terms of the solutions to the underlying partial 
differential equations being considered. The choice of a particular presentation for the 
Green’s function depends on the actual source of excitation. 
 
• Usually there is the same amount of work in obtaining the Green’s function for a 
differential equation as there is in obtaining direct solutions. However, the benefit of the 
Green’s function is in the fact that once it is found, the solutions of the differential 
equations for any excitation (driving terms) can be easily obtained with the help of its 
Green’s function.    
 
Example of Green Function in Circuit Theory: 
 
• To better understand the use of the Green’s function in the circuits consider the simple 
RL circuit shown below  
 

 
• We assume that the circuit is at rest for tt ′< . At tt ′=  the voltage source is turned on 
for a very short period of time, t′Δ , via an impulse of magnitude 0V . For times 

ttt ′Δ+′> , the excitation is again zero. The differential equation governing the behavior 
of the current , )(ti , in the circuit is given by the following: 
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For  ttt ′Δ+′>   0)()( =+
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Where as stated above )(tv is an impulse function of magnitude 0V .  
 
• Equation (C-1) represents the state of our circuit during the application of our impulse 
function (Dirac delta function), and Eq. (C-2) represents the state of the circuit after the 
application of our impulse function.  
 
• Let us integrate (C-1) over the period of tttt ′>>′Δ+′  ⇒  
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Where the RHS of C-3 comes about because )(tv represents a Dirac delta function of 
duration t′Δ  and amplitude 0V . 
 
• We assume that t′Δ  is so short that during this excitation time )(ti  is not too large in a 

way that 0)( ≈∫
′Δ+′

′

dttiR
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.Figure below shows an exaggerated version of this scenario.  

• Then (C-4) simplifies to  
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• We now consider the solution to (C-2), i.e. the solution to 0)()( =+
dt

tdiLtiR  for 

ttt ′Δ+′> . The solution is given by 

c

t
t

L
R

eIeIti τ
−−

== 00)(  for ttt ′Δ+′> (C-6) 
 

• Since )(ti  is continuous then 
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• Then the solution )(ti  is given by 
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Fig. 2 



• Now let us assume that the circuit is subjected to a series of impulse functions (Dirac 
delta functions) each of duration t′Δ  and magnitude ),...,2,1,0( NiVi =  occurring at 

),...,2,1,0( Nitt i =′= . The total response of the circuit is given by 
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• If we now assume that )(tv  is a continuous arbitrary excitation, the excitation can be 
presented as a series of impulse functions of various amplitudes centered at different time 
intervals as described above. Then the results in (C-9) can easily be extended to this 
continuous arbitrary excitation by ∫∑ → , i.e., we have  
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=′  for tt ′> is the Green’s function.   (C-12) 

 
• Equation (C-12) is our RL circuit Green’s function which is the circuit response to an 
impulse function for tt ′> . Knowing the Green’s function as given by (C-12) the system 
response to any arbitrary input )(tv  can then be obtained from (C-11), i.e. via the 
convolution of the input with the Green’s function.  
 
• In the followings, since most of our formulations related to the Green’s function deals 
with spatial coordinates we will rewrite (C-11) as  
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b

a

′′= ∫ ),()()(       (C-13) 

where )(xy is the output, )(xf  is the input, and ),( xxG ′  is the Green’s function. 



Properties of Green Function: 
 
• We state the following properties associated with the Green’s function without proving 
them.  

1. ),( xxG ′  satisfies its corresponding differential equation except at xx ′= . 
2. ),( xxG ′  is symmetric with respect to x  and x′ . 
3. ),( xxG ′  satisfies the corresponding differential equation boundary conditions. 
4. ),( xxG ′  is continuous at xx ′= . 
5. ),( xxG ′  is discontinuous at xx ′= . 

 
Sturm-Liouville Differential Equation and Operator: 
 
• Sturm-Liouville differential equation in one dimension is given by 
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• (C-14) can also be written in the language of operators as 
 

)(xfyL = ,        (C-15) 
 
where L  is the Sturm-Liouville operator given by 
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• The importance of Sturm-Liouville operator (or differential equation) can be 
appreciated from the following two facts. 
 
• Any second order non-homogenous differential equation such as  
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can be transformed into Sturm-Liouville differential equation by finding the relations 
between )(),( xqxp , and  )(xf  with )(),(),( xCxBxA , and )(xS .  (HW) 
 
• Many of the governing differential equations in EM theory can be expressed in terms of 
Sturm-Liouville differential equation. 



 
 
Green’s Function for Sturm-Liouville Differential 
Equation 
 
• To start, we rewrite the Sturm-Liouville differential equation of (c-14) in a slightly 
different way, i.e. 
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[ ] )()( xfyxrL =+ λ     (C-19) 
Where, λ  is the eigenvalue (not to be confused with wavelength!) 
 
• The Green’s function for Sturm-Liouville differential equation is a solution of the 
following equation 
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• The solutions to (C-20) over the domain ),( ba  is given by 
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where )()()()()( 1221 xyxyxyxyxW ′′−′′=′ is known as the Wronskin and 

)(1 xy  and )(2 xy  are the nontrivial solutions of the homogenous equation (C-18). )(1 xy ′′  
and )(2 xy ′′  are the derivatives of )(1 xy  and )(2 xy  with respect to their argument. 
 
• Clearly in the above formulation we are assuming that solutions to the homogenous 
differential equation of (C-18) are known.  


