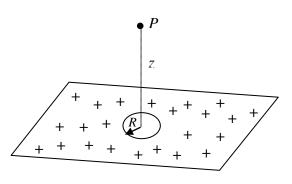

Homework #1 ECE 1228

 For the electric fields graphically shown below indicate whether the fields are solenoidal (divergence free) or not. In the case of non-solenoidal fields indicate the charge generating the filed is positive or negative. Justify your answer.



2) Can either or both of the vector fields shown below represent an electrostatic field (\vec{E}). Justify your answer.

5) Figure shows a flat, positive, non-conducting sheet of charge with uniform charge density σ [C/m²]. A small circular hole of radius *R* is cut in the middle of the surface as shown.

Calculate the electric field intensity (E) at point *P*, a distance *z* from the center of the hole along its axis. Hint 1: Ignore the field fringe effects around all edges. Hint 2: Calculate the field due to a disk of radius *R* and use superposition.

6) The instantaneous electric field inside a conducting parallel plate waveguide is given by

$$\vec{E}(r,t) = \hat{a}_{y} E_{0} \sin\left(\frac{\pi}{a}x\right) \cos(\omega t - \beta_{z} z)$$

where β_z is the waveguide's phase constant and *a* is the waveguide width (a constant). Assuming there are no sources within the free-space-filled pipe, determine a) The corresponding instantaneous magnetic field components inside the conducting pipe.

b) The phase constant β_z .