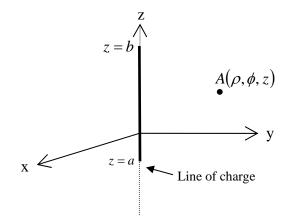
## Homework #2 ECE 1228

1) An infinitely long straight line charge has a constant charge density  $\rho_l$  [C/m].


a) Using the integral formulation for  $\vec{E}$  discussed in the class calculate the electric field at an arbitrary point  $A(\rho, \phi, z)$ .

b) Using the Gauss law calculate the same as in part (a)

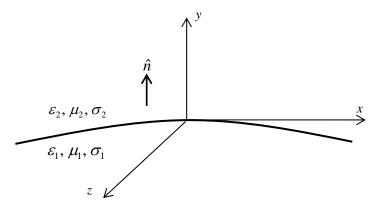
C) Now suppose that our uniformly charged line

( $\rho_l$  constant) has a finite extension from z = a to

z = b, find the electric field at the arbitrary point A. Note: Express your results in cylindrical coordinate system.



2) If gradient of a scalar function  $\psi$  in rectangular coordinate system is given by


 $\vec{\nabla} \psi = \frac{\partial \psi}{\partial x} \hat{a}_x + \frac{\partial \psi}{\partial y} \hat{a}_y + \frac{\partial \psi}{\partial z} \hat{a}_z$ , using coordinate transformation and chain rule show

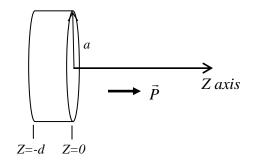
that the gradient of  $\psi$  in cylindrical coordinate is given by

 $\vec{\nabla} \psi = \frac{\partial \psi}{\partial \rho} \, \hat{a}_{\rho} + \frac{1}{\rho} \frac{\partial \psi}{\partial \phi} \, \hat{a}_{\phi} + \frac{\partial \psi}{\partial z} \, \hat{a}_{z} \, .$ 

3) In the class note we showed that when there were no sources at the interface between two media and neither of the two media was a perfect conductor  $(\sigma_1, \sigma_2 \neq \infty)$  the boundary condition on the tangential magnetic field was given by  $\hat{n} \times (\vec{H}_2 - \vec{H}_1) = 0$ . Here, show that when  $\vec{J}_i + \vec{J}_c = \vec{J}_{ic} \neq 0$ , the B.C. is given by  $\hat{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{J}_s$ , where,  $\vec{J}_s = \lim_{\Delta y \to 0} \vec{J}_{ic} \Delta y$ .

Note: Used the geometry provided in figure below for your proof.




4) Show that when there are source charges present at the boundary between two media  $(\rho_{ev} \neq 0)$ , the B.C. on normal  $\vec{D}$  is given by  $\hat{n} \cdot (\vec{D}_2 - \vec{D}_1) = \rho_s$ , where  $\rho_s$  [c/m<sup>2</sup>] is the surface charge density.

Note: Use the same geometry (coordinate system) as shown in problem 3.

6) The plane 3x + 2y + z = 12 [m] describes the interface between a dielectric and free space. The origin side of the interface has  $\varepsilon_{r1} = 3$  and  $\vec{E}_1 = 2\hat{a}_x + 5\hat{a}_z [V/m]$ . What is  $\vec{E}_2$  (the field on the other side of the interface)?

7) A dielectric circular desk of radius *a* and thickness *d* is permanently polarized with a dipole moment per unit volume  $\vec{P}$  [C/m<sup>2</sup>], where  $|\vec{P}|$  is constant and parallel to the disk axis (*z*-axis here) as shown in the Figure. a) Calculate the potential along the disk axis for z > 0.

b) Approximate the result obtained in part (a) for the case of Z >> d.

