## Homework #7 ECE 1228

1) Prove the followings:

a) Show that for the orthonormal basis  $\{u_i(r)\}$ , the coefficients of expansions for  $\psi(r) = \sum_{i=1}^{n} c_i u_i(r)$  are given by  $c_i = (u_i, \psi)$ .

b) Let  $\psi_1(r)$  and  $\psi_2(r)$  be both square integrable functions, show that  $\lambda_1 \psi_1(r) + \lambda_2 \psi_2(r)$  is also square integrable, where  $\lambda_1$  and  $\lambda_2$  are in general constant complex numbers.

2) Given 
$$\psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dk \ \overline{\psi}(k) \ e^{ikx} dk$$
 show that  $\int_{-\infty}^{+\infty} dx \ |\psi(x)|^2 = \int_{-\infty}^{+\infty} dk \ |\overline{\psi}(k)|^2$ . This is

the Parseval theorem which implies that the norm of a wave function can be calculated in either x or k space.

3) In this problem we investigate the relation between causality and analyticity. Consider the case of one-dimensional wave propagation in a semi-infinite medium characterized with  $n(\omega)$  and filling the x > 0 region. Let the wave packet U(x,t) be normally incident from vacuum on the

medium and suppose  $\frac{\partial U(x,t)}{\partial x}\Big|_{x=0} = 0$ . a) Show that a general solution in the

medium is given by

$$U(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{2}{1+n(\omega)} \overline{U}(\omega) e^{ik(\omega)x - i\omega t} d\omega$$

where  $\overline{U}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} U(0,t) e^{i\omega t} dt$ .



b) We require that U(x,t) to be causal and

bounded, i.e., U(0,t) = 0 for  $t \le 0$  and  $|U(0,t)| \le M$ , where  $M \in \{R\}$ . Show that this implies that  $\overline{U}(\omega)$  is analytical in the upper half part (UHP) of the complex frequency plane ( $\omega \to \eta + i\xi$ ).

c) Suppose U(x,t) is not causal, what will be the conclusion of part (b). Justify your answer.

4) Show that the set  $\{V_k(x)\}$  where  $V_k(x) = \frac{1}{\sqrt{2\pi}}e^{ikx}$  are plane waves, form an orthonormal basis that also satisfies the closure relation.

Start by proving the following 
$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\xi(\eta'-\eta)} d\xi = \delta(\eta'-\eta)$$

5) Let the wave function  $\psi(\vec{r})$  be expanded in the orthonormal bases  $\{U_i(\vec{r})\}$  according to  $\psi(\vec{r}) = \sum c_i U_i(\vec{r})$  where  $c_i$  are the coefficients of expansion. Show that the

normalization requirement  $\iiint |\psi(\vec{r})|^2 dr^3 = 1$ ,

implies 
$$\sum_{i=1}^{\infty} |c_i|^2 = 1$$

6) An electron potential barrier is shown in Fig. 4.1. Suppose an electron with energy  $E > V_0$  is propagating from left to right (normal incidence). a) Write the wave functions  $\phi(x)$  in each region in terms of  $k_1$ ,  $k_2$ , and  $k_3$ .

b) Calculate the square of the transmission coefficient (*T*) and reflection coefficient (*R*) for the above case in terms of  $k_1$ ,  $k_2$ , and  $k_3$  and sin function.



Fig. 4.1

c) Express the above transmission function T, in terms of energy E and potential  $V_0$ .

d) What are the minimum and maximum values for *T*?

e) For what values of  $k_2$  and L the transmission is maximum (this is called resonance condition.)

f) Schematically plot T as a function of L for a given E and  $V_0$ . What optical system has a similar transmission function?

g) For the case of  $E < V_0$ , calculate the T as a function of E and  $V_0$ .