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Conservation of Energy & Poynting Theorem 
 
• From Maxwell’s equations we have 
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• From above it can be shown (HW) 
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• We rewrite the above according to 
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• let us define 

suppρ−=⋅+⋅ ii JEMH
vvvv

 
≡suppρ Supplied power density [Watt/m3] 

( ) [Watt] suppsupp PdvdvJEMH
vv

ii −=−=⋅+⋅ ∫∫∫∫∫∫ ρ
vvvv

 

 

• =
∂
∂

⋅=
∂
∂

⋅=⋅ ∫∫∫∫∫∫∫∫∫ dvH
t

HdvB
t

HdvMH
vvv

d

vvvvvv
µ  

m

W

vv

W
t

dvH
t

dvHH
t

m

∂
∂

=
∂
∂

=⋅
∂
∂

∫∫∫∫∫∫
4434421

vvv 2

2
1

2
1 µµ  









=⋅=

⋅
==⋅ JsWattA

A
sVHAm

m
A

m
H: 223

2

2

mW  

≡
∂
∂

mW
t

Rate of change of stored magnetic energy: [J/s = Watt] 

 

• e

W

vvvv
d W

t
dvE

t
dvE

t
dvE

t
EdvJE

e

∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

⋅=⋅ ∫∫∫∫∫∫∫∫∫∫∫∫
4434421

vvvvvv 22

2
1

2
1 εεε  



 29


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Rate of change of stored electric energy [J/s = Watt] 

 
• disp
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•  exitPsdHE =⋅×∫∫
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≡exitP Power exiting the volume enclosed by surface S : 
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• We can rewrite Poynting Equation 
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Time Harmonic or Sinusoidal Steady State 
Electromagnetic Fields 
 
• In time harmonic picture the instantaneous field ( )tzyxE ,,,

v
 and the complex spatial 

field ( )zyxE ,,
v

 are related by 
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• Remark 1: Fields can also be described as imaginary parts 
( ) ( )[ ]tjezyxEtzyxE ω,,Im,,, =  

 
• Remark 2: Most engineering books (not all) use time dependency of tje ω , most  
physics books (not all) use tie ω− , ji −↔  
 
• Remark 3: We will see that for tje ω the wave tjjkzee ω− and for tie ω− the wave 

tiikzee ω− are positively traveling waves 
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• With help of tje ω time dependency ωj
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• This is similar to circuit analysis for which ωωσ jjs
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• Or in integral form 
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Poynting theorem for time harmonic fields 
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• From (1) and (2) we have (HW) 
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• Ifε andµ are complex ( εεε ′′−′→ j  and µµµ ′′−′→ j ) then their imaginary parts 

contribution to the dissipated power must be added to ∫∫∫=
2

2
1 EPd

v
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imaginary). 

z

tjjk ee z ω+  tjjk ee z ω−
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Poynting Vector 
 
• Instantaneous Poynting Vector is defined as ( ) ( ),tr,tr vvvvv

HES ×=  
 
• Note: in the followings I use the scripted letters K

v
,,HE to designate instantaneous 

fields, i.e. ( )tr ,vE  and ( )tr ,v
v
H , and regular letters ( ) ( )rHrE vvvv , , to designate the time 

harmonic fields, i.e., only the spatial dependency 
 
• We are to write the ( )tr ,vS  in terms of time harmonic fields ( ) ( )rHrE vvvv ,  
( ) ( )[ ] ( )[ ]tjtj etrHerEtr ωω ,ReRe, vvvvvv ×=S  
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• Now let’s calculate the time average of S  
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• Whereas, the instantaneous Poynting vector in terms of the time-harmonic fields is 
given by: 

( ) [ ] [ ] [ ]tjtj eHEeHEHEtr ωω 22 Re
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A remark on time average of energy densities 
 

• Recall we defined magnetic energy as ( ) ( )∫∫∫=
v
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• Now, let’s calculate the time average of this quantity i.e., mW  
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• The time average is given by 
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• Similarly 

∫∫∫= dvEWm
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4
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Lorentz-Lorenz Dispersion 
 
• We model the oscillating electron and nucleus as a mass and spring 
 
• This electron oscillator model is often called Lorentz model. It is not really a model 
for atom as such, but the way that an atom responds to a perturbation.  At the time 
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when Lorentz formulated the model, it was not known that nuclei have massive mass 
as compared to the electrons.  
 
• The Lorentz assumption was that in absence of applied electric field the centroids of 
positive and negative charges coincide, but when a field is applied, the electrons will 
experience a Lorentz force and will be displaced form their equilibrium position. 
 
• He then wrote “the displacement immediately give raise to a new force by which the 
particle is pulled back toward its original position, and which we may therefore 
appropriately distinguish by the name of elastic force.” 
  

          
 
• Once field is applied the electron moves, but we assume nucleus remains stationary 

 
• Spring has a restoring force xSF −=hook  

≡S Spring tension coefficient 
 

• There is also friction within the system: vD
dt
dxDFfriction −=−=  

≡D Friction coefficient 
 
• The friction (damping) is the result of electron interacting with other atoms, electrons, 
lattice potential, defects, vibrational mode of the material, etc. 
 
• Equation of Motion: 

hookfrictionext2
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0= (assuming time harmonic fields) 
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• Let’s define 

m
D
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m
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• tje
m

QE
x

dt
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xd ωωγ 02
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=++ is a second order, linear, non-homogeneous differential 

equation 
 
• Solution to above consist of two parts: complementary ( cx ) and particular ( px ) 
solutions 
 
• Complementary solution, which is the transient response, is the solution of 

homogeneous differential equation (i.e. the forcing term 00 =tje
m

QE ω ) 

 
• Complementary solution (transient response) 0→  as ∞→t  
 
• Particular solution, which is the steady state solution, is of interest to us. 
 
• Let us assume time-harmonic solutions such as tj
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Calculating Permittivity & Susceptibility 
• Recall
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, where tjeEE ω

0=  

I) Assume that dipoles are identical 
II) Assume no coupling between dipoles 
III) There are N dipoles per unit volume. In other words, N is the number of dipoles 
per unit volume. 



 35

 
• Polarization ( )tP  is given by ( ) NQxtP =  where Q  is charge associated with dipole 
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• Compare rε above with Jackson (3rd Edition) Equation 107 
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• Now, suppose there are N molecules per unit volume and each molecule 
has Z electron, and there are if electrons per molecule that have the binding frequency 
(resonance frequency) iω and damping constant iγ then 

∑
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ε
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≡if Oscillator strength and ∑ = Zfi  
 
• Real and imaginary parts of rε ( rrr jεεε ′′−′= ) are given by 



 36

[ ] ( )
( ) ( )

[ ] ( ) ( )2222
0

2222
0

22
0

2

Im

1Re

ωγωω

γωω
εε

ωγωω

ωωω
εε

+−
=′′=

+
+−

−
=′=

p
rr

p
rr

 

 
• Recall that the displacement of electrons subject to the force tjeQE ω

0 was given by 
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ω
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j
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/
. Note that the displacement of electrons from 

equilibrium is sinusoidal with time at the frequency of the source 
 
• If there is no damping (no friction in our mechanical model), i.e., 00 =⇒= γD then 
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• Note as ∞→→ x,0ωω . The frequency 0ωω = is called the resonance of the system. 
This model predicts a catastrophic response at 0ωω =  
 

• Note that if there is no damping ( 0=γ ), 22
0

2

1
ωω

ω
εε

−
+=′= p

rr  and 0=′′rε . 

 
• If resonance frequency is also zero ( 00 =ω , the case of free charges), then 

2

2

1
ω
ω

εε p
rr −=′= , which is negative for ωω >p . 

 
• While above considerations do not predict losses in the case of free charges ( 00 =ω ), 
there is in fact conduction losses associated with the free charges.  Recall the 
discussion of static conductivity and its origin. 
 
• When damping is present, the resonance frequency is the root of the characteristic 

equation of the homogeneous differential equation 02
02

2

=++ x
dt
dx

dt
xd ωγ , for real 

frequencies. 
 

• Resonance frequency is then given by ( ) 22
0
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0 2/ αωγωω −=−=r where 

m
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 37

 

Wave Equation 
 
• In the following the field quantities are instantaneous 
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v
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( )xx AA ∇⋅∇=∇2 .  Laplacian is the divergence of gradient 
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• Suppose that medium is magnetically homogenous (µ  is independent of rr ) then 
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• Use Ampere Law [Eq. (2)] for H

v
×∇ in Eq. (5) 
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• From Gauss Law recall εevρE =⋅∇

v
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Wave equation for electric field:  
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• Wave equation for magnetic field: 
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• Time harmonic wave equations: 


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

∇++−×∇+=∇
ε
ρωµσεµωωµ ev22 EjEMJjE sii

vvvvv
    (2) 









∇++−×∇−+=∇

µ
ρωµσεµωσωε mv22 HjHJMMjH siisi

vvvvvv
   (3) 

 
• For source free region 0=== evii ρJM

vv
we have [see Eq. (5-last page)] 
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• If conductivity is also zero ( 0== sσσ ) then 

EE
vv

2

2
2

t∂
∂

=∇ µε  

 
• In the case of time harmonic fields for source free but lossy medium [Eq. (4)], we 
have 

EjEj

EjEjEjEE
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ss
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vvvvv

][)]([
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ωµσωεµεωσωµωεµ

ωµσωεεµωµσµεω
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=+′′−′−=+−=∇
    (6) 

where eass σσσεωσ =+=′′+  is the effective conductivity. 
 
• Define: ( ) ejj ωµσωεµβαγ +′−=+= 222   with α  and β  designating the real and 
imaginary parts of the γ , βαγ j+= , where 
≡α Attenuation constant [Np/m] 
≡β Phase constant [rad/m] 
≡γ Propagation constant [1/m] 

then 
EjE e

vv
][ 22 ωµσωεµ +′−=∇  ⇒ EE

vv 22 γ=∇  
 
• For lossless case ( )0=eσ  from Eq. (6) we have 
 EE

vv
εµω ′−=∇ 22  

 

• Note ( ) 22
0

22 ωεµωεµωµσβαγ ′−=′−=+=
876

ejj  for lossless case. Then 

εµωβαεµωωεµβαγ ′==→′=′−=+= andjj 02  in the case of lossless 
medium. 
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• Then EEE
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• Wave equation for scalar components of E
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• As an example the x-components of the electric filed must satisfy the following: 
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z

zyxE
y

zyxE
x xxxx β−=

∂
∂

+
∂
∂

+
∂
∂  

The differential equations for other components of the field are similar 
 

Solutions to Wave Equation 
 
• To find the solutions for xE  we assume ( ) ( ) ( ) ( )zhygxfzyxEx =,,  and use the 
separation of variables technique to get 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ),

 , 

 , 

0111

2
2

2

2
2

2

2
2

2

2
2

2

2

2

2

2

zh
dz

zhd

yg
dy

ygd

xf
dx

xfd
dz

zhd
hdy

ygd
gdx

xfd
f

z

y

x

β

β

β

β

−=

−=

−=

⇒=+++

 

With 2
2

2
22222 n

czyx ′=′==++
ωεµωββββ , which sometime is called the constraint 

equation. 
 
 
 
• Solutions are  
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⇔−= )()( 2
2

2

xf
dx

xfd
xβ  ( ) xjxj xx eBeAxf ββ +− += 111  

( ) ( ) ( )xDxCxf xx ββ sincos 112 +=  
( )

⇔−= )(2
2

2

yg
dy

ygd
yβ  ( ) yjyj yy eBeAyg ββ +− += 221  

( ) ( ) ( )yDyCyg yy ββ sincos 222 +=  

( )
⇔−= h

dz
zhd

z
2

2

2

β  ( ) zjzj zz eBeAzh ββ +− += 331  

( ) ( ) ( )zDzCzh zz ββ sincos 332 +=  
 

• xj xe β± are called traveling wave solutions 
• ( )xxβcos or ( )xxβsin are called standing wave solutions 
 
• The type of solution chosen depends on the 
problem and the boundary condition. 
 
• For example, for waves confined in the x- 
and y-directions and traveling a long the z-
direction we have: 

( ) ( ) ( ) ( )
( ) ( )[ ]
( ) ( )[ ]

zjzj

yy

xx

x

zz eBeA

yDyC
xDxC
zhygxfzyxE

ββ

ββ
ββ

+− +

⋅+
⋅+
==

33

22

11

sincos
sincos

,,

 

 
• zj ze β− is the positively traveling wave and zj ze β+ is the negatively traveling wave (for 
time dependency of tje ω+ ) 
 
• To see this note the following 

( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( )ztAyDyCxDxCezyxEE zyyxx
tj

x βωββββω −+⋅+== cossincossincos,,Re 32211

For our choice of tjzj ee z ωβ−  
 
 
 
 
 
 
 
 
 
 
 

z

y  

x wave guide
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• Let’s plot ( )zt zβω −cos for different times 

 
• To follow the point pZ at different times we must keep ( )pz ZtA βω −cos3 constant 
⇒We must keep the phase pzZt βω − constant with time ⇒  

( ) p
z

pp
zpz V

dt
dZ

dt
dZ

Zt
dt
d

==⇒=−⇒=−
β
ωβωβω 00  

 

•
z

pV
β
ω

= is called phase velocity 

 

Solution to Wave Equation in Source Free but Lossy 
Medium 
 
• Recall wave equation for lossy medium was given by 

[ ] EEjE e

vvv 222 γωµσµεω =+′−=∇        (1) 

where ( )222 βαωµσµεωγ jj e +=+′−=  
 
• Once again Eq. (1) ⇒  

( ) ( ) ( ) =∇+∇+∇ zyxEazyxEazyxE zyyxx ,,ˆ,,ˆ,, 222  

( ) ( ) ( )zyxEzyxEaEaEaE xxzzyyxx ,,,,ˆˆˆ 222 γγ =∇⇒++  and so forth for yE  and zE  

Increasing time 
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• Once again we propose a solution of the form ( ) ( ) ( ) ( )zhygxfzyxEx =,,  and use 
separation of variables to show 

( ) ( )

( ) ( )

( ) ( ),

 , 

 , 

2
2

2

2
2

2

2
2

2

zh
dz

zhd

yg
dy

ygd

xf
dx

xfd

z

y

x

γ

γ

γ

+=

+=

+=

 

With 2222 γγγγ =++ zyx constrained equation 
 
• Then ( ) ( ) ( ) ( )zhygxfzyxEx =,,  is given by 
( )
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( ) ( ) ( )zDzCzh

eBeAzh

yDyCyg
eBeAyg

xDxCxf
eBeAxf

zz

zz

yy

yy
xx

xx

zz

yy

xx

γγ

γγ

γγ

γγ

γγ

γγ

sinhcosh

sinhcosh

sinhcosh

332

331

212

221

112

111

+=
+=

+=
+=

+=
+=

−

−

−

 

 
• Exponential functions represent attenuated traveling waves and hyperbolic cosine and 
sine represent attenuated standing waves 
 
• Choices for the sign of γ  
 
• Recall we had ( ) ( )βαγβαγ jj +±=⇒+= 22 . We could have equally defined 

( ) ⇒−= 22 βαγ j ( )βαγ j−±=  then we have four choices: 
 











+−=
−=
−−=

+=

βαγ
βαγ
βαγ

βαγ

j
j

j
j

which one should we choose 

 
zjzz

zzz
zzz eeej βαγβαγ −−− =⇒+=  travels along +z-axis, decays along +z-axis 

zjzz
zzz

zzz eeej βαγβαγ +− =⇒−−= travels along -z-axis, decays along –z-axis 
zjzz

zzz
zzz eeej βαγβαγ −+− =⇒+−= travels along +z-axis, grows along +z-axis 

zjzz
zzz

zzz eeej βαγβαγ +−− =⇒−=  travels along -z-axis, grows along –z-axis 
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• For a positively traveling wave (+z-axis) in a passive media (media with no gain or 
external source of energy), we must have a wave that decays as it moves further in the 
media. Hence, the correct sign for a positively traveling wave in a passive media is 

zjzz
zzz

zzz eee

j
βαγ

βαγ
−−− =

+=
 

with our choice of time dependency of tje ω+  
 

Summary 
 

• Traveling waves 
 traveling negativefor  

 traveling positivefor  

ze

ze
zj

zj

z

z

β

β

+

−

 

 

• Standing waves 
( )
( ) zz

zz

x

z

 negativeor  positivefor  sin
 negativeor  positivefor  cos

β
β

 

 

• Evanescent waves 
ze
ze

z

z

z

z

 negativefor  
 positivefor  

α

α−

 

 

• Attenuated traveling waves 
 traveling negativefor  e

 traveling positivefor  
z zee

zeee
zjzz

zjzz

zz

zzz

βαγ

βαγ

=

= −−−

 

 
• Attenuated standing waves 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) zzzjzzz

zzzjzzz

zzzzz

zzzzz

 negative and positivefor  sinhcoscoshsinsin
 negative and positivefor  sinhsincoshcoscos

βαβαγ
βαβαγ

+=
−=

 

 

• Note that: 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )zzjzz

zjzzjzzjzz

zzzz

zzzzzzz

βαβα
βαβαβαγ

sinhsincoshcos
sinsincoscoscoscos

−=
−=+=

 

 

 

Wave Equation in Cylindrical Coordinates 
 
• Previously we solved the wave equation EE

vv 22 β−=∇  in rectangular coordinate 
system for lossless and source free region 
 
• Suppose that boundary condition (the geometrical consideration) of the problem 
requires us to solve the wave equation in cylindrical coordinates.  How do we go about 
this? 
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• In cylindrical coordinates 

( ) ( ) ( ) zz azEazEazEE ˆ,,ˆ,,ˆ,, φρφρφρ φφρρ ++=
v

 
 
• Then EE

vv 22 β−=∇  ⇒ [ ] ( )zzzz aEaEaEaEaEaE ˆˆˆˆˆˆ 22 ++−=++∇ φφρρφφρρ β  
 
• But  

( ) ρρρρ EaaE 22 ˆˆ ∇≠∇  and 

( ) φφφφ EaaE 22 ˆˆ ∇≠∇  
while, 

( ) zzzz EaaE 22 ˆˆ ∇=∇  
 
• Then how do we solve EE

vv 22 β−=∇ for 

zz aEaEaEE ˆˆˆ ++= φφρρ

v
. In other words, what is 

E
v2∇ ? 

 
• Note that EE

vv 22 β−=∇  was obtained by using  
( ) EEE

vvv
×∇×∇−⋅∇∇=∇2  

 
• Using above in EE

vv 22 β−=∇  we have  
( ) EEE

vvv 2β−=×∇×∇−⋅∇∇  (Wave equation in lossless source free region) 

Where n
c

′=′=
ωεµωβ  is a constant  

 
• In cylindrical coordinates  

( ) zp E
z

EEE
∂
∂

+
∂
∂

+
∂
∂

=⋅∇ φφρ
ρ

ρρ
11v

 

and 

( )
z

aaaz z ∂
∂

+
∂
∂

+
∂
∂

=∇
ψ

φ
ψ

ρρ
ψφρψ φρ ˆ1ˆˆ,,  

and 

( ) 







∂

∂
−

∂
∂

+







∂
∂

−
∂
∂

+







∂

∂
−

∂
∂

=×∇
φρ

ρ
ρρρφρ

ρ
φρφ

φ
ρ

E
EaEE

z
a

z
EEaE zz

z 11ˆˆ1ˆ
v

 

 
• The use of ⋅∇ , ∇  and ×∇ in cylindrical coordinate in ( ) EEE

vvv 2β−=×∇×∇−⋅∇∇  
will result in three partial differential equations: 

ρ
φρ

ρ β
φρρ

E
EE

E 2
22

2 2
−=








∂

∂
−−+∇  

x

y

z  

φâ

ρâ  

zâ  

ρ  

z  
φ
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φ
ρφ

φ β
φρρ

E
EE

E 2
22

2 2
−=








∂

∂
+−+∇  

zz EE 22 β−=∇  
where, 

2

2

2

2

22

2
2 11

z∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=∇
ψ

φ
ψ

ρρ
ψ

ρρ
ψψ  

with ( ) ρφρψ Ez ≡,, , φE ,or zE  
 
• Note that differential equations for ρE  and φE  are coupled partial differential 
equations while the differential equation for zE  is not coupled 
 
• The solutions of zz EE 22 β−=∇  are most useful in constructing TEz and TMz modes 
(TE and TM with respect to WRT z-direction) boundary value problems and will be 
considered here. 
 
• From zz EE 22 β−=∇ and the expression for ( )zE≡∇ ψψ   2 we have  
 

ψβψ
φ
ψ

ρρ
ψ

ρρ
ψ 2

2

2

2

2

22

2 11
−=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

z
 where      (1) 

( )z,,φρψψ =           (2) 
 
• Let ( ) ( ) ( ) ( )zhgfz φρφρψ =,, .  Substitute (2) in (1) and we have: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )zhgf
dz

zhdgf
d
gdzhff

d
dzhgf

d
dzhg φρβφρ

φ
φ

ρ
ρρ

ρρ
φρ

ρ
φ −=+++ 2

2

2

2

22

2

 
• Divide both sides by fgh and we get: 

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) 2
2

2

2

2

22

2 1111 βφ
φφρρ

ρ
ρρ

ρ
ρρ

−=+++ zh
dz
d

zh
g

d
d

gd
df

f
f

d
d

f
  (4) 

Where 2β is a constant 
 

• Since ( ) ( )zh
dz
d

zh 2

21 , which is only a function of z, added to other terms (which are 

functions of ρ  and φ ) must equal to a constant ( 2β− ) for all values of z , we must 
have 

( )
( ) 2
2

21
zdz

zhd
zh

β−= , where 2
zβ is another constant 

 
• Then, Eq. (4) can be written as 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) 01 222
2

2

2

22

=−+++ ρββφ
φφ

ρ
ρρ

ρρ
ρρ

ρ
zg

d
d

g
f

d
d

f
f

d
d

f
 

 

• Note that in the above, ( )
( )
2

21
φ
φ

φ d
gd

g
, which is only a function of φ , added to other 

terms must equal to a constant (0 here), then similar to the previous case we sety 
 

( )
( ) 2
2

21 m
d
gd

g
−=

φ
φ

φ
, where 2m is a constant 

 
• Let us also define 222222 ββββββ ρρ =+⇔=− zz (constraint equation for wave 
equation in cylindrical coordinates) 
 
• using the constraint equation we see 

( ) ( ) ( ) ( ) ( ) ⇒=−+−+ 02222
2

22

ρββρ
ρρ

ρρ
ρρ

ρ
zmf

d
d

f
f

d
d

f
 

( ) ( ) ( ) ( ) 0222
2

2
2 =+−+ ρρβρ

ρ
ρρ

ρ
ρρ ρ ffm

d
df

d
fd  

Where 2
ρβ and 2m are constant.  Above is the classical Bessel Differential Equation. 

( ) ( ) ( ) ( ) 0222
2

2
2 =−++ ρρβ

ρ
ρρ

ρ
ρρ ρ fm

d
df

d
fd  

 
 

Summary 
 
• The solution to ψβψ 22 −=∇  where ( ) ( )zEz z ,,,, φρφρψ ≡ is given by 

( ) ( ) ( )zhgf φρψ =  where ( )ρf , ( )φg , and ( )zh are themselves solutions to  
 

( ) ( ) ( ) ( )zh
dz

zhdzh
dz
d

zh zz
2

2

2
2

2

21 ββ −=⇔−=       (1) 

 

( ) ( ) ( ) ( )φ
φ
φφ

φφ
gm

d
gdmg

d
d

g
2

2

2
2

2

21
−=⇔−=       (2) 

 
( ) ( ) ( ) ( ) 0222

2
2 =−++ ρρβ

ρ
ρρ

ρ
ρρ ρ fm

d
df

d
df       (3) 

With constraint equation µεωβββ ρ
2222 ==+z  
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• Solutions to ( ) ( ) ( ) ( )zh
dz

zhdzh
dz
d

zh zz
2

2

2
2

2

21 ββ −=⇔−=  are given by  

Standing wave ← ( ) ( ) ( )zBzAzh zz ββ sincos 111 +=  
or 
Traveling wave ← ( ) zjzj zz eDeCzh ββ +− += 112  
 

• Solution to ( ) ( ) ( ) ( )φ
φ
φφ

φ
gm

d
gdmg

dz
d

g
2

2

2
2

2

21
−=⇔−=  are given by  

Standing wave ← ( ) ( ) ( )φφφ mBmAg sincos 221 +=  
or 
Traveling wave ← ( ) φφφ jmjm eDeCg +− += 222  
 

• Solution to ( ) ( ) ( ) ( ) 0222
2

2 =−++ ρρβ
ρ
ρρ

ρ
ρρ ρ fm

d
df

d
df  (Bessel Diff. Eq.) is given by 

Traveling wave ← ( ) ( ) ( )ρβρβρ ρρ
)2(

3
)1(

31 mm HBHAf +=  
or 
Standing wave ← ( ) ( ) ( )ρβρβρ ρρ mm YDJCf 332 +=  

( ) ≡ρβρ
)1(

mH Hankel function of the first kind 

( )≡ρβρ
)2(

mH Hankel function of the second kind 
( ) ≡ρβρmJ Bessel function of the first kind 
( ) ≡ρβρmY Bessel function of the second kind 

 
• The functions ( ) ( ) )2()1( ,,,,sin,cos, mmmm

j HHYJe LLK±  are all 
valid solutions.  Which one is used in a given problem, 
depends on the problems at hand (particularly the 
boundary conditions). 
 
• As an example consider a metallic cylindrical waveguide.  The solution inside of the 
guide, a<≤ ρ0 is given by: 

( ) ( ) ( ) ( )
( ) ( )[ ] ( ) ( )[ ] [ ]zjzj

mm

in

zz eDeCmBmAYDJC

zhgfz
ββ

ρρ φφρβρβ

φρφρψ
+− +⋅+⋅+=

=

112233 sincos

,,
 

 
• Note that inside the guide the solution in ρ must be standing waves, the solution in 
φ  must be periodic, and solution in z must be traveling waves. 
 
• Furthermore, since ( )ρβρmY is singular at 0=ρ , then ⇒= 03D  

x

y  

z

a  

ρ  
φ  
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( ) ( ) ( )[ ][ ]zjzj
min

zz eDeCmBmAJC ββ
ρ φφρβψ +− ++= 11223 sincos  

 
• The field outside of the guide ( a>ρ ) must be traveling in both z and ρ and be 
periodic in φ , then 

( ) ( ) ( ) ( )[ ][ ]zjzj
m

zz eDeCmBmAHBz ββ
ρ φφρβφρψ 1122

)2(
3out sincos,, ++= −  

Where ( )ρβρ
)2(

mH  is positively traveling wave 
 
• Note the following relations for Hankel functions of the first and second kind. 

( )

( )
∞→









−





−−

∞→









−





−

=

=

ρβ

ππ
ρβ

ρ
ρ

ρβ

ππ
ρβ

ρ
ρ

ρ

ρ

ρ

ρ

ρπβ
ρβ

ρπβ
ρβ

42)2(

42)1(

2

2

mj

m

mj

m

eH

eH
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Fields, Modes, TEM, Plane wave and Uniform plane 
waves 
 
• Field is a modification of space-time coordinates 
 
• Mode is a particular field configuration for a given boundary value problem.  
Many field configurations (modes) may satisfy the Maxwell equations (wave equation).  
These usually are referred to as the modes. 
 
• In TEM mode, E

v
and H

v
at every point in space are constrained in a local plane, 

independent of time.  This plane is called equiphase Plane.  In general equiphase 
planes are not parallel at two different points along the trajectory of the wave 

 
• If equiphase planes are parallel (i.e. the space orientation of the planes for TEM mode 
are the same), then we say we have a plane wave.  In other words, the equiphase 
surfaces are parallel planar surfaces. 
 
• If in addition to parallel planar equiphase surfaces, the field has Equiamplitude 
planar surfaces (the amplitude is the same over each plane), we say we have a 
uniform plane wave.  In this case field is not a function of the coordinates that make 
up equiamplitude and equiphase plane 
 
 
 
 
 
 

Phase Front of TEM wave
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• We mentioned wave trajectory, what do we mean by wave trajectory 
 
• Consider the following plane wave: 

tjrkjeEE ω+⋅−=
vvvv

0 when 0E
v

is a constant and β
vv

=k  
 
• Since 0=⋅∇ D

v
for source free region 0=⋅∇⇒ E

v
then ( ) 00 =⋅∇=⋅∇ +⋅− tjrkjeEE ωvvvv

 
Recall ( ) fFFfFf ∇⋅+⋅∇=⋅∇

vvv
 

Then [ ] 000 =∇⋅+⋅∇=⋅∇ +⋅−+⋅− tjrkjtjrkj eEEeE ωω vvvv vvv
, but 00 =⋅∇ E

v
 

000 =⋅⇒=⋅− +⋅− EkeEkj tjrkj vvvv vv ω  
 
• Using 0=⋅∇ H

v
 we can also show 0=⋅Hk

vv
 

 
• It can also be shown (HW) HEk

vvv
ωµ=× and EHk

vvv
εω−=×  

 
Summary: 

HEs
EHk

HEk
Hk
Ek

vvv

vvv

vvv

vv

vv

×∝

−=×

=×

=⋅

=⋅

εω

ωµ

0
0

 

 
H
v

 

k
v

E  

S
v

RHM y

z

x  

E  

H  

k

Phase fronts of plane wave 
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• Let’s assume there are situations for whichε andµ are both negative εε −→  and 

µµ −→ then 
 

HEs

EHk

HEk

Hk

Ek

vvv

vvv

vvv

vv

vv

×∝

+=×

−=×

=⋅

=⋅

ωε

µω

0

0

 

 

Relation 
between E

v
and H

v
for plane waves 

 

• From EakHHEakHEk kk

vrrvvvv
×=⇒=×⇒=× ˆˆ

ωµ
ωµωµ  

where kâ  is the unit vector along k
r

. 
 

• With rrn
c

k εµεµωω
00==  Expression for H

r
 can be written as 

⇒×= EaH k
r

rr
rr

ˆ
0

00

µωµ
εµεµω

 
ηεµµµ

εε EaEaEaH kk
k

r

r

rr
rr ×

=
×

=×=
ˆ

/
ˆˆ

0

0  where 

εµη / =  is the medium intrinsic impedance and we can define 

[ ]Ω===  377120/ 000 πεµη  as the free space intrinsic impedance. 
 
• Similar expression for E

r
 in terms of H

v
 can be found to be 

HaE k

rr
×−= ˆη  

 
 

E
v

H
v

k
v

S
v

 
Meta-materials or 
LHM (left-handed 
media) 
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Fresnel Reflection & Transmission Coefficients 
• The case of E

v
 Perpendicular Polarization: 

 
• The interface is in xy plane 
 
• Plane of incidence is xz plane 
 
• Incident waves are 1,, KHE ii

vvv
 

 
• Reflected waves are 1,, KHE rr ′

vvv
 

 
• Transmitted waves are 2,, KHE tt

vvv
 

 
• ≡1θ Angle of incidence, 
  ≡′1θ Reflection angle 
  ≡2θ Transmitted angle 
 
• As stated earlier this geometry is for 

⊥E ( E
v

perpendicular to the plane 
of incidence) or TE (electric field is transverse to the propagation direction) or 
σ polarization 
 
• y

tjrkj
i aeeEE ˆ1

0
ω+⋅−=

vvv
 where zzxx akakk ˆˆ 111 +=

v
 with 

11111 sinsin θωθ n
c

kk x ==  and 11111 coscos θωθ n
c

kk z ==  and 1111 εµωω
c

n
c

k == . 

Then ( )zx aakk ˆcosˆsin 1111 θθ +=
v

 and we have ( )
y

tjzxjk
i aeeEE ˆ111 cossin

0
ωθθ +−=

v
 

 
• Note also that 

111
2

1
2

1
2

12

2
2

12

2
2

1
2

11
2

1
2

1
2

1 cossin1sin θωθωθωω n
c

n
c

n
c

n
c

kkkkkk xzzx =−=−=−=⇒=+

 

• From 
1

ˆ
η

iki
i

EaH
r

r ×
=  we have ( ) ( ) tjzxjk

zxi eeaa
E

H ωθθθθ
η

111 cossin
11

1

0 ˆsincosˆ +−+−=
v

 

 

x

z2θ  

1θ

′
1θ

iH
v

iE
v

1θ

rE
v

rH
v

1k
v

2k
v

tE
v

tH
v 2θ

′
1k
v

′
1θ

y

•

•
•
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x
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• For Reflected wave we have  

y
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vv ωεµω  

 then  since ˆsin ˆcos  1111111 kkakakk xz =′′′+′′−=′ θθ xz akakk ˆsinˆcos 11111 θθ ′+′−=′  
The reflected E

v
and H

v
are then 
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• Transmitted E

v
and H

v
are 
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• Note that ⇒=+ 2
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• We now apply the B.C. at xy  plane and 0=z , requiring tangential E

v
and H

v
to be 

continuous (two good dielectric) 
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• Note that tangential components are along x and y  
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• The above is a set of 4 equations and 4 unknowns ( tr,,, 21 θθ ′ ).  It can be reduced to 
2 equations and 2 unknown.  Once this is done we have 

2211

11

sinsin θθ
θθ

kk =

′=  

 
• 21 θθ = is the first Snell’s Law of Refraction (i.e. the incident & reflected angles are 
equal) 
 
• Second Snell’s Law of Refraction 

22112211212211 sinsinsinsinsinsin θθθωθωθθ nnn
c

n
c

kkkk xx =⇒=⇔=⇔=  

This says that tangential component of the propagation vector across the interface is 
continuous. 
 
• The use of the two Snell’s law (above) 
will reduce our set of 4 equations and 4 
unknowns to 2 equations and 2 unknowns: 

tr =+1  (1) 
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• (1) and (2) can be solved to give 
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• Using εµη /=  and multiplying top and bottom by 2121 µµεε  we have 
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• Recall 

22222222

11111111

coscoscos

coscoscos

θεµωθωθ

θεµωθωθ

c
n

c
kk

c
n

c
kk

z

z

===

===
 

 
 

zk1

xk1
1k

1θ

1θ
2θ  

xk2

zk2  

z

x



 55

 
• Hence 
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and similarly 
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• Note that (1) and (2) are reflection and transmission coefficient (Fresnel field 
coefficients) for TE or ⊥E

r
 polarization. 

 

Two Interface Problem 
• We consider TE or E

r
 perpendicular 

polarization.  The Fresnel reflection 
coefficients at each interface can be 
written as: 
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• At 0=z   
(1) DtArrA 2112 +=  
(2) DrAtC 2112 +=  
 
• At dz = (slab thickness is d ) 
(3) djk zCetAt 2
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(4) ⇒= − djkdjk zz CerDe 22
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• Use (5) in (2) then 
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(1) ⇒+= + φjCerrAtC 2
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• Using (2) in φjdjk CetCetAt z
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• In a similar manner (HW) we can show 
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• Note if medium 1 and 3 are the same  
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• From the expression for TEr  we see that 
if 02112 == rr , then 0TE =r ; i.e. there is 
no reflection from the slab.  This is 
called the matched condition. 
 

• Recall 12
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• What happens to TEt  (transmission coefficient) under matched condition.  
 
 
 

2

11,εµ
22 ,εµ  11,εµ

1 3

• 
z

x y  

z =0 z =d 



 57

• Note that with ⇒== 02112 rr
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( zz kk 1221 µµ = ) we have 12112 == tt , which then implies 
djkjj zeeettt 2

2112
TE −++ === φφ  and 0TE =r .  This says that under matched condition the 

slab only inserts a phase on the traveling wave. 
 
• At normal incidence 021 ==θθ , the matching condition (no reflection from the slab) 
given by 1221 coscos θηθη =  will simplify to 21 ηη = . 
 
• Note that under matched condition with djkj zeet 2TE −+ == φ  we can write 
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dvg , where we will later see 

ωφ ∂∂− /  is called the group delay. 
 
• Final Remarks: you should study (self study) topics such as 
critical and Brewster angles. 


