Conservation of Energy & Poynting Theorem

* From Maxwell’s equations we have
VxE=-M, —a—Bz—M, —ﬁsz M. - M
ot ot

QU

aﬁE:j 7 +J,

[’11

VxH:][+aE+aa—lt):.7[+

* From above it can be shown (HW)

V-ExH+H-(M,+M,)+E-(J+T.+7,)=0 or
ﬁExﬁ-dFrI”H-(Mi+]\7[d)dv+J'”E-(j[+jc+jd)dv:0
S v v

* We rewrite the above according to

-5 [[[101, -3 ) o [, (8- ) [ -5, v =0

* let us define

I:I'Mi +E'ji :_psupp

Pappy =Supplied power density [Watt/m’]

[[[( 82, + E-J.)dv=—[[[ pupy dv == Py [Watt]

. ” A, dv:mﬁ%g dv:mg%ﬂg dy =

10 1 5 0
”J‘an H - Hdv = —{_!ng‘H‘zdv = an

| S —
W

2
Wm:[E-A—znrﬁ:HA2 ALy Watt-s:J}
m m A

ng = Rate of change of stored magnetic energy: [J/s = Watt]

ot

”jE J, dv= mE —gEdv m——g\E\ dv :_m JE[ dv_%W

\_q/_—d
W,

e
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2
W :F'V—zm*ﬁ
m m

EWE = Rate of change of stored electric energy [J/s = Watt]

ot
 [J[E-3. av= [t o= (ol =,

P

disp

. . | B VAR VA
=Dissipated power (ohmic loss): | ——-—-m” = —— = Watt
Q-m m Q

- ffExH d5s =P,

P

exit

AN
m

=Power exiting the volume enclosed by surface S : [— m’ = Watt}
m

* We can rewrite Poynting Equation

@Exﬁ-d§+j;”(ﬁ-Md)dv+j_v[j(E-jd)dv+I_!jE-jc dv:—j”(I:I-Mi+E-.7i)dv

P +2Wm +§We FIE,
t

it =P This is Conservation of Energy

isp sup

Time Harmonic or Sinusoidal Steady State
Electromagnetic Fields

« In time harmonic picture the instantaneous field £ (x, Vv, z,t) and the complex spatial
field £(x, y,z) are related by

E(x, ¥, z,t) = Re[E’(x,y,z)ej”’]

H(x,y,z,t)= Re[ﬁ(x, ¥, z)ej””]

* Remark 1: Fields can also be described as imaginary parts
E(x,y,z,t)= Im[E(x,y,z)ej”’]

jot

* Remark 2: Most engineering books (not all) use time dependency of e’” , most
physics books (not all) use e, i <> —j
* Remark 3: We will see that for ¢/ the wave e “e/” and for e the wave

e’ e are positively traveling waves
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e+jkz e/ W -/\/\/\' e—jkz el

» Z

« With help of e’” time dependency g & jw
t
* This is similar to circuit analysis for which % Os=0+joo jo

cEx: VxE=-—
V x E(F)@jw — _%,ug(?)ej(ut
e VxE(F)=—po H(F) e’ = Vx E(x,y,z)=—jou H(x,y,z)

* Or in integral form

§E-di=—jw”yﬁ-d§

Poynting theorem for time harmonic fields

* VxE=-M, - jouHand VxH =J, + jos E+c E = (1)
«VxH =J - joc E"+0 E )

* From (1) and (2) we have (HW)

bty B3 )= L B ol + oy L] - ol

Or

4 5 v B s+ [ ot ,-a{ [[Fsut” - ([ 8o
 Ifc and 1z are complex (¢ > &' — j&" and 1 — u'— ju") then their imaginary parts

contribution to the dissipated power must be added to P, = ”J% O"E ‘2 . In other

words the term j a)[J‘ _[ J% ,u‘ﬁ ‘2dv - ”J% g‘E ‘%lv} is considered as reactive (purely

imaginary).



Poynting Vector

« Instantaneous Poynting Vector is defined as S = (7,¢)x #(7,)

« Note: in the followings I use the scripted letters &, %,...to designate instantaneous
fields, i.e. £(F,¢) and #(7,¢), and regular letters E(7 ), H(7), to designate the time
harmonic fields, i.e., only the spatial dependency

» We are to write the S(? ,t) in terms of time harmonic fields £ (;7 ), H (,7)
3(’2 t) = Re[E(f)ej‘”’ ]x Re[}—[(f,t)ejwz]

* Note that: Re[gl]x Re[B] # Re[]l X E]

Ee'™ + E*e /™ (7, ot 7 —jot
'3(7,1)=@(F,t)x}?(?,t){Ee’ vEe HHef F e }:’

2 2

\§(l7,l‘)= @(?,t)xf[(F,t):%Re[Exﬁ* +EX]:I€/20)I]

* Now let’s calculate the time average of §

then
T
<§> Z%J-%Re[— x H* +E><I:Ie’2‘”’]dt
0
= %Re{%jﬁx [rl*dt} +%Re{%j5’x de’z‘”’dt}
0 0

:%Re[ExH*]+0:>

—

Sue=(8) = RelEx ']

» Whereas, the instantaneous Poynting vector in terms of the time-harmonic fields is
given by:

$(7.) =3 RelBx 1"+ RelEx He™ |= (3) 4 RelEx e

31



A remark on time average of energy densities

* Recall we defined magnetic energy as W, (¢)= %I” ,u‘f[ (7 ,t)rdv

* Now, let’s calculate the time average of this quantity i.e., <W >

m

W (t):% ([ 2 71, 1)- 2 () but 77(7,) = Rel A(F)e’ ] then
W, (t)= %”J‘,u Re[ﬁe-/“” ] Re[I:Iej”’ ]dv

dv

1 He'™ + H e i@ He'™ + { o1
Wm:EW“ : +2 = +2 :

) %'ﬁm{ﬁ-ﬁe””‘ +lf-He ™+ -+ (1)} dv
= %J‘”%Re[ﬁ-I:Iezj”[]+‘ﬁ‘2u}afv
= %J:Ulu Re[[—?l—?ezﬂw ]dv+ij..!._|.ﬂ‘]——l‘2dv

* The time average is given by
=11 mm[g e 2 mﬂ\ﬁrdvdt -
0r) = 11wl v

* Similarly

)= [[[E av

Lorentz-Lorenz Dispersion

* We model the oscillating electron and nucleus as a mass and spring

» This electron oscillator model is often called Lorentz model. It is not really a model
for atom as such, but the way that an atom responds to a perturbation. At the time
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when Lorentz formulated the model, it was not known that nuclei have massive mass
as compared to the electrons.

* The Lorentz assumption was that in absence of applied electric field the centroids of
positive and negative charges coincide, but when a field is applied, the electrons will
experience a Lorentz force and will be displaced form their equilibrium position.

* He then wrote “the displacement immediately give raise to a new force by which the
particle is pulled back toward its original position, and which we may therefore
appropriately distinguish by the name of elastic force.”

* Once field is applied the electron moves, but we assume nucleus remains stationary

s
m
E _
p Wwu
* Spring has a restoring force /| , =-S5 x
S =Spring tension coefficient
. . . dx
* There is also friction within the system: F, . = —Dj =-Dv
' t

D =Friction coefficient

* The friction (damping) is the result of electron interacting with other atoms, electrons,
lattice potential, defects, vibrational mode of the material, etc.

* Equation of Motion:

m—= =Y F, =F, + Faion + Fron

2 i ext friction
dt 7

F,

ext

Fioox =—Sx (spring or hook force)

=External (applied) force = QF = QF e’” (assuming time harmonic fields)

friction

= —D? (friction force) then
t

2 2
. md—f+D@+Sx=QEoe-/’“” = d_j‘+2ﬂ S _OF ju
dt dt dt> mdt m m
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» Let’s define

D
y=— & a)oz = i
m m
d? dx 2 OF, ;
Yy — @, x=""Ce™ 1
ar ar m v
QE, m {ﬁ === acceleration}
m mass | kg s
V- F = Hertz} @, F = Hertz}
< s

2
E
. d jc_l_]/dx_l_a)ozx:Q 0 ot §
dt dt m

equation

is a second order, linear, non-homogeneous differential

* Solution to above consist of two parts: complementary (x.) and particular (x,)

solutions

* Complementary solution, which is the transient response, is the solution of

%, e o)

homogeneous differential equation (i.e. the forcing term——

» Complementary solution (transient response) —> 0 as t — ©

* Particular solution, which is the steady state solution, is of interest to us.

* Let us assume time-harmonic solutions such as x, = x,e’* and substitute this in our

differential equation =

E
—xoa)2+jx0)/a)+x0a)02:Q ==
m
E,/ .
X, = 2Q 02m with y =D/m and ®," =S/m

W, —0° + jyo

Calculating Permittivity & Susceptibility

Jjor
* Recall x = x,e’” = gEOe - /n‘q =— QEim — , where E = E e’
w, —0 +jro o, -0 +jro
I) Assume that dipoles are identical
IT) Assume no coupling between dipoles
IIT) There are N dipoles per unit volume. In other words, N is the number of dipoles

per unit volume.




* Polarization P(t) is given by P(t) = NQOx where Q is charge associated with dipole

[C]. NOx has dimension of: [L} -C-m= %}
m m

O’NE Im

» Using P(t)= ONx we have P(l)z 3 >
W, —0 + jyo

O*N/m

P
* We calculate the ratio — = 5 5
W, —0° + jyo

p
*Recall P=¢ y E= y, =

0™ e

=

O’N /me,

2 o
0, — o+ jyw

Xe =

QzN 2 2 . ) 1
* We define =, where o, has the dimension of: —

me, s
Then
2 2
a)p a)p
Xe =" — = e =l+y, =1+ 5 —
0w, —0 +jro ®, —0" + jro

« Compare £, above with Jackson (3" Edition) Equation 107
2

& @,

—=1+
2 2 .
& 0, —0° -1y

* Now, suppose there are N molecules per unit volume and each molecule

35

has Z electron, and there are f, electrons per molecule that have the binding frequency

(resonance frequency) o, and damping constant y, then
O’N 3 Ji

mée, wiz_a)2+j7ia)
J: =Oscillator strength and Z fi=Z

e =1+ , where

* Real and imaginary parts of ¢.(¢. =¢. — je! ) are given by
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Rele, |=¢ = a)pz(woz _a,2)
T @ -ef ey

a0y
Imle, |=¢ = £
Lkt e

* Recall that the displacement of electrons subject to the force OF e

, E,e’™ /m
x=x,e’" = g . 5 . Note that the displacement of electrons from
w, —0 + jyo

equilibrium is sinusoidal with time at the frequency of the source

+1

/* was given by

« If there is no damping (no friction in our mechanical model), i.e., D =0 = y = 0then
E,/ . o’
x:—Q2° me"‘”,ands :i:1+—2” (1)
2 r 2
w, — & w, —

* Note as@w — @,,x = © . The frequency o = ,is called the resonance of the system.

This model predicts a catastrophic response at @ = @,

2

®
* Note that if there is no damping (y =0), ¢, =¢’=1+—"— and & =0.
@, —o

* If resonance frequency is also zero (@, = 0, the case of free charges), then
2
¢, =¢'=1——"-, which is negative for v, > .
@

* While above considerations do not predict losses in the case of free charges (v, =0),

there is in fact conduction losses associated with the free charges. Recall the
discussion of static conductivity and its origin.

* When damping is present, the resonance frequency is the root of the characteristic

2 dx

2
+y—+w, x =0, for real
th o

equation of the homogeneous differential equation P
t

frequencies.

 Resonance frequency is then given by o, = \/ w, —(y/2) = \/ w,” —a® where

a=== 1D and a)02 > o (case of underdamped)
2 2m

Note:if y=0=>a=0=>0, =@,



Wave Equation

* In the following the field quantities are instantaneous

- 0B - 0 - -
VXE=———- M. =—tu—H —M. 1
o M= TH, ; (D
~ - 0~ - - OE _
VxH=9+—D+9 =9 +&—+0.FE 2
8 I ot Je=Jite ot s @
From (1) we have VxVx@:—Vx(y%ﬁj—Vxﬁli (3)

From (2) we have Vxfo[=iji+ng%@+anﬁ
4

* Note that VxV x 1 =V(V-4)-V>4 where V>4 =V>1 a,+ V’A,a,+V’ 4,4 and
V’a L=V (V . ) Laplacian is the divergence of gradient

* Then (3) can be written as

v(v@)—vzoz":—vw(%ﬁ)—wfwi (5)

* Suppose that medium is magnetically homogenous ( # is independent of 7 ) then

0 - 0 A
Vxu —H |=u—VxH
”(az J r”

« Use Ampere Law [Eq. (2)] for Vx # in Eq. (5)
We have

- - 0| = OE ~ _
VIV-E)-V*E=—u—|7 +6—+0E|-VxM
V-8)-VE=-ul| 7400 108 |-V
Or
2

_ _ o - _ o0 - _
VE=VV-E)+ u—7 + ue—FE+ puoc.—E+V x M.
(V) o i+ e Bt o — :

« From Gauss Law recall V-& = p, /¢ then
Wave equation for electric field:

. _ o° _ 0 - P
VE=u—39 +VxM +eu—=E+ uoc. —E+V| L= 6
ﬂatl e T ETHO, o (gj (6)

37
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* Wave equation for magnetic field:

5 _
szf{:ggfvli +o,M —Vx]J, +gya—2}7+yaa—}[+v P (1)
ot ot ot Y7,
* Time harmonic wave equations:
VzEzja),uji-I-VXMI.—(()zgﬂE—i—ja)lugSE_FV(&) (2)
£
VZH=ja)€Mi-I-GSMI.—VXJZ.—wzg;lﬁ+jwﬂqyﬁ+V(hj (3)
Y7,

« For source free region , = J, = p, = Owe have [see Eq. (5-last page)]

_ o OF
VE = ue—E + po, — 4
He ST ETHO 4)

* If conductivity is also zero (o = o, =0) then
62

V?E = ue—E
o

* In the case of time harmonic fields for source free but lossy medium [Eq. (4)], we

have

V’E = —uew’E + jouc E = —u(e' - je"o’E + jouc E = ©
[~ue'e’ + jou(o, + we")| E =[-ue'o’ + jouc,| E

where o, + we" =0, + 0, =0, is the effective conductivity.

* Define: y° = (a + jﬂ)2 =—uc'®’ + jouo, with @ and B designating the real and
imaginary parts of the , ¥ = a + jf, where

o = Attenuation constant [Np/m]
£ =Phase constant [rad/m]

y =Propagation constant [1/m]
then
VE =[-us'o’ + jouc 1|E = V’E=y’E

* For lossless case (o, =0) from Eq. (6) we have
V’E =-0’us' E

0
——

*Note y* =(a + jB) = jouo, — us'o” = —us'o* for lossless case. Then

y=a+ jB=+—us'o’ = jo us' — a=0and f=w\ue' inthe case of lossless

medium.



« Then V’E = —@’ us'’E = —B°E where

2 2 2
2 2 r_ 2 I_a) ,_C() ’ _CU 12 _a) '
ﬂ =W HE =0 HyE U, r_TlLlr r_? H.E, _c_zn > OF ﬂ_;n

» Wave equation for scalar components of E
VE=-pE= VZEX& +V?E,a, +V3E.4 =-p|Ea, +Ea, +E.d =

y

E =-fE, =E,(x.7.2)
V’E,=-p’E, :wnhE Ey(xy, z)
VE = SE. E.=E.(x,y.2)

* As an example the x-components of the electric filed must satisfy the following:
V’E (x,y,2)=—B’E (x,y,2) =

2 2 2

2B 53D+ B (60,4 5 B (50,2 == E.(5.0,2)
oy’
The differential equations for other components of the field are similar

Solutions to Wave Equation

« To find the solutions for £, we assume E_(x,y,z)= f(x)g(y)h(z) and use the
separation of variables technique to get
2 2
L&f ) L d8b) L dha) g
f dx’ g dy h dz

Wit

ot =B ),
L) g2 (),
)

. , o, . . .
With B+ B, + B = B = @’ ue’' =—-n", which sometime is called the constraint
c

equation.

* Solutions are

39
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2
O pirwe  fl)=4e P B
X
f2(x)=C, cos(,x)+ D; sin(5,x)
2
ddg(zy) — _ﬂyzg(y) = g (y) — Aze—J’ﬁy}’ + Bzeﬂ'ﬁvy
Y
&> (y) =C, COS(ﬂyy)+ D, Sin(ﬂyy)
= —ﬂzzh < b (Z) = A,e”’* + B’

h, (Z) =G, COS(IBZZ)+ D, sin(,Bzz)

d’h(z)
dz*

« ¢"/”* are called traveling wave solutions
« cos(f3,x) orsin(f3,x)are called standing wave solutions

* The type of solution chosen depends on the

problem and the boundary condition. X :
V/— wave guide
A
* For example, for waves confined in the x- -1
and y-directions and traveling a long the z- /

direction we have:
E,(x,7,2)= f(x)g(»)h(z) = .
[C1 cos(,Bxx)+ D, sin(ﬂxx)]-
[C2 cos(ﬂ},y)+ D, sin(ﬂyy)]-

ASe—jﬂzZ + B3e+jﬂzz

+jﬂ.'z 1

« e/’ is the positively traveling wave and e*/**is the negatively traveling wave (for

time dependency of e*/*")

* To see this note the following
E= Re[Ex (xa Vs Z)ejwt ] = [Cl Cos(ﬂxx)+ Dl Sin(ﬂx‘x)] ) [C2 Cos(ﬂyy)_'_ D2 Sin(ﬂyy)]A3 COS(C()t - ﬁzz)

For our choice of e /¢’
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« Let’s plot cos(wt — f.z)for different times

Magnitude | F (2, t)]

* To follow the point Z , at different times we must keep 4, cos(a)t -p.Z, )constant
= We must keep the phase wr — .7, constant with time =
d dz dZ w

—\wt—-pF.7 |=0= w— P (0> —2 = -
dt( ﬂz”) ’szt B b

o . .
*V, =—1is called phase velocity

z

Solution to Wave Equation in Source Free but Lossy
Medium

* Recall wave equation for lossy medium was given by

V’E = [— o’ eu+ jouc, ]E =y’E (1)
where y* = —~w’s'u+ jouc, =(a + jB)

* Once again Eq. (1) =

VzEx(x,y,Z)&x + VZEy (x,y,z)&y + VZEZ (x,y,z) =

yz(Ex&x +E.a,+ EZ&Z):> V’E (x,y,z)=y"E,(x,y,z) and so forth for E, and E,



» Once again we propose a solution of the form £ _(x,y,z)= f(x)g(y)h(z) and use

separation of variables to show

"ZLE’“) =+7, f(x),
dx

&(2)}) =+7g(y),
dy

d di(f) =+7.h(z),

With 7x2 + ;/yz + yzz =y’ constrained equation

* Then E (x,y,z)= f(x)g(y)h(z) is given by
fi(x)=A4e”" + B
£(x)=C¢, cosh(y x)+D sinh(y x)

)=4

g (v " +Be”
gz(y) C, cosh( VY )+ D, sinh( yy)
l(z) 4+ Bie’”

h,(z)= C cosh(;/Z )+ D, sinh(y_z)

42

* Exponential functions represent attenuated traveling waves and hyperbolic cosine and

sine represent attenuated standing waves

* Choices for the sign of »

* Recall we had y* = (a +jp )2 =>y= i(a + jﬂ). We could have equally defined

y = (a —j,B)2 =>y= i(a — j,B) then we have four choices:

y=a+jp
y=—a—jp| ..
) which one should we choose
y=a-jp
y=-a+jp
7. =a. + jp. = e’ =e ““e/’ travels along +z-axis, decays along +z-axis
7. =—a. — jB. = e’ = e"“e/’ travels along -z-axis, decays along —z-axis
7. =—a.+ jfB. = ¥ = e" e ¥ travels along +z-axis, grows along +z-axis

y.=a. —jp.=>e’ = efazze“ﬂ * travels along -z-axis, grows along —z-axis
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* For a positively traveling wave (+z-axis) in a passive media (media with no gain or
external source of energy), we must have a wave that decays as it moves further in the
media. Hence, the correct sign for a positively traveling wave in a passive media is

7/2 = aZ + jﬂz

—7:z -a.z ,—jp.z

e =e e

with our choice of time dependency of e

+jor

Summary

. e /< for positive z traveling
* Traveling waves ‘ _
e’ for negative z traveling

. cos(ﬂzz) for positive or negative z
* Standing waves o ]
sm(ﬂxz) for positive or negative z

e “* for positive z
 Evanescent waves

e“* for negative z

e

e’¥ = e e /< for positive z traveling

* Attenuated traveling waves ,
e’” = e’ e’ for negative z traveling

* Attenuated standing waves
cos(y.z) = cos(a.z)cosh(f.z)— jsin(a.z)sinh(/3. z) for positive and negative z

sin(y.z) = sin(e.z)cosh(f.z)+ j cos(a,z)sinh(3.z) for positive and negative z

cos(y.z) = cos(a,z + jB.z) = cos(a.z)cos(jf.z) —sin(e.z)sin( jB.z)

N hat:
ote that: _ cos(a.z)cosh(f3.z)— jsin(a.z)sinh(/3.2)

Wave Equation in Cylindrical Coordinates

« Previously we solved the wave equation V>E = —4°E in rectangular coordinate
system for lossless and source free region

* Suppose that boundary condition (the geometrical consideration) of the problem
requires us to solve the wave equation in cylindrical coordinates. How do we go about
this?
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°}n cylindrical coordinates
E=E, (p.4.2)a, +E,(p.4,2)a, + E.(p.4,2)a.

*Then V?E =-f°E = V*[E, a, +E,a, +E.a.|=-p*(E,a, +E,a, +E.a,)

* But

V(£ a,)#a V’E, and
v3(E,a,)#a,VE,
while,
V*(E.a.)=a.V’E.

« Then how do we solve V°E = —3°FE for
E= E,a,+E,a,+E._a_.In other words, what is
VE?

« Note that V>E = —3’E was obtained by using
V’E=V(V.-E)-VxVxE

« Using above in V°E = —°E we have
V(V : E)— VxVxE=-B"E (Wave equation in lossless source free region)

® , .
Where = w\ ue' =—n' is a constant
c

* In cylindrical coordinates

v.E=12 (£ )+liE¢+iEz
pop - " pog 0z
and
. oy . loy . oy
Vylp,z)=a, —+a,———+a4, —
l/l(p ¢ Z) ap ap a¢ p a¢ az 82
and
_ OE OFE
Tred | 295 O +a, 95 _9F |+a, ii(pE¢)—l 2
"l p 0 Oz oz © Op p Op p 0¢

* The use of V-, V and V xin cylindrical coordinate in V(V . E)— VxVXE=-8°E
will result in three partial differential equations:
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E 2 OE
V'E, +(__¢25+_2 P pj=—ﬁzE¢
p- p 09
V’E.=-pB°E.
where,
2 2 2
Vi Oy 1oy 10y ov

“opt pop pof o
with y(p,4,2)=E,, E, or E,

* Note that differential equations for £ and E, are coupled partial differential

equations while the differential equation for £_ is not coupled

« The solutions of V’E_. = —B”E_ are most useful in constructing TE* and TM” modes

(TE and T™M with respect to WRT z-direction) boundary value problems and will be
considered here.

« From V’E_ =—/’E_and the expression for V’y (w =FE, )we have

2 2 2
61§+l61//+%81/;+61/2/:_ﬂzw where (1)
op° pop p 0P Oz
v =y(p.4,2) )

s Let !//(p, ¢,z) = f(p)g(¢)h(z). Substitute (2) in (1) and we have:

oMoy L (o) BN ), TOMILED ) ) M) o)t
p dp p ¢ dz

* Divide both sides by fgh and we get:

1 a7 1 dflp), 1 & L& )
f(p)dpzf(p)+pf(p) dp | pralg)dg 2(9)+ (2)=-p 4)

Where [ is a constant

: 1 4’ - : .
* Since ——~— h(z), which is only a function of z, added to other terms (which are

h(z) dz
functions of p and ¢) must equal to a constant (— £°) for all values of z , we must
have
1 d’h(z)
h(z) dz*

2 2.
=—/.", where £_" is another constant

* Then, Eq. (4) can be written as
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p> d’ p d 1 d’ P 2) 2 _
1loh—2s dpf(p)+%d72g(¢)+(ﬂ ~pR ot =

2
* Note that in the above, 1 dg (2¢)
gle) d¢

terms must equal to a constant (0 here), then similar to the previous case we sety

, which is only a function of ¢, added to other

d’g(¢)
glg) a¢’

* Let us also define f° — 8. = B> < B.> + B,” = B° (constraint equation for wave

=—m’, where m”is a constant

equation in cylindrical coordinates)

* using the constraint equation we see

A o)LL p(p)-mi(p - g =0 =

1(p)dp® f(p)dp
G I )

Where S, and m”are constant. Above is the classical Bessel Differential Equation.

,d? d 2 2 o
p dj;(zp)+p J;(;)+(ﬂpp —m’)f(p)=0

Summary

* The solution to V> = -y where y(p,¢,z)= E_(p,$,z)is given by
w = f(p)z(p)n(z) where f(p), g(4), and h(z)are themselves solutions to

ﬁ%h(z)z—ﬂzz o M)y M
e o T i) @
de/()) f( V(g% =m)r(p)=0 )

With constraint equatlon ,BZ + f p2 =p* =0’ ue



47

2 2
* Solutions to ﬁz)%h(z) =5’ ddigz) =—f.”h(z) are given by
Standing wave «— /,(z) = 4, cos(f.z)+ B, sin(.z)

or
Traveling wave — h,(z)=C,e* + D,e™’*

. 1 d ? 2 d 2g(¢ ) 2 .
olution to g( ) 3 g((ﬁ) m- < > m g((p) are gl\/e]l y
Standing wave < g,(¢)= 4, cos(m¢)+ B, sin(mg)

or
Traveling wave — g,(#)=C,e ™ + D,e™™*

« Solution to p’ dg(/j) +p d];(p) + (ﬂpzpz - mz)f(p) =0 (Bessel Diff. Eq.) is given by
p p

Traveling wave — f,(p)= 4,H" (ﬂpp)+ B,H? (,Bpp)
or

Standing wave < f, (p) =C,J, (ﬂpp)—i— DY, (ﬂpp)

H fn”(ﬂ ; p)EHankel function of the first kind

H ff)(ﬂ ; p)E Hankel function of the second kind .

J, (ﬂ B p)EBessel function of the first kind ‘

Y (ﬂp p)z Bessel function of the second kind h
<

» The functions e/, cos(---),sin(---),.J, .Y, ,H" ,H® are all ‘V’ ¥

valid solutions. Which one is used in a given problem,
depends on the problems at hand (particularly the z
boundary conditions).

* As an example consider a metallic cylindrical waveguide. The solution inside of the
guide, 0 < p < ais given by:

v, (0.4.2)= f(p)g(p)h(z)
- [C3Jm (ﬁpp)+ D.Y, (ﬁpp)]- [4, cos(m@p)+ B, sin(mg)]- [Cle’fﬁ:z + D1e+_/ﬂzz]

* Note that inside the guide the solution in p must be standing waves, the solution in
¢ must be periodic, and solution in z must be traveling waves.

* Furthermore, since Y, (ﬁ ., p)is singular at p =0, then D, =0=
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Vin =Gl ('BppIAz cos(m¢)+ B, sin(m¢)][cle—jﬁ.-z + Dleﬂﬁ:Z]

* The field outside of the guide ( p > a ) must be traveling in both z and p and be
periodic in ¢, then

Vout (Pa 9, Z) = B3Hr(i12)(ﬂpplA2 Cos(m¢) + B, Sin(m¢)][cleijﬁzz + Dlejﬂzz]
Where H (,6’ f p) is positively traveling wave

* Note the following relations for Hankel functions of the first and second kind.

n0(p,)- [
i

HP(B,p)= . ,32 ; ej[ﬂ;ppi[fjﬂ
, ,
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Fields, Modes, TEM, Plane wave and Uniform plane
waves

* Field is a modification of space-time coordinates

* Mode is a particular field configuration for a given boundary value problem.
Many field configurations (modes) may satisfy the Maxwell equations (wave equation).
These usually are referred to as the modes.

« In TEM mode, £ and A at every point in space are constrained in a local plane,

independent of time. This plane is called equiphase Plane. In general equiphase
planes are not parallel at two different points along the trajectory of the wave

EY |

E;

==

F—— e ———

-

™

Phase Front of TEM wave

* If equiphase planes are parallel (i.e. the space orientation of the planes for TEM mode
are the same), then we say we have a plane wave. In other words, the equiphase
surfaces are parallel planar surfaces.

* If in addition to parallel planar equiphase surfaces, the field has Equiamplitude
planar surfaces (the amplitude is the same over each plane), we say we have a
uniform plane wave. In this case field is not a function of the coordinates that make
up equiamplitude and equiphase plane
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Phase fronts of plane wave

* We mentioned wave trajectory, what do we mean by wave trajectory

* Consider the following plane wave:
E = E,e”*""/* when E,is a constant and k = S

« Since V- D = 0 for source free region = V-E =0then V-E =V (Eoe‘-"’;‘”-"“’t)z 0
Recall V-(fF)= /v -F+F-Vf

Then V- E = e ™"V . B, + B, -V|e " |= 0, but V. B, =0

— jk-Ee " —0=k-E=0

« Using V-H =0 we can also show & -H =0
« It can also be shown (HW) k x E = wuH and k x H = —swE

Summary:

k-E=0 E X

RHM
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* Let’s assume there are situations for which ¢ and x are both negative ¢ — —|g| and

H—> —| ,u| then
o E
k-E=0 A
- = Meta-materials or
k-H=0
o _ LHM (left-handed
kxE = —a)|,u|H B _ media)
kx = +|e|oE ko — S
<§ o« ExH
H
Relation

between E and A for plane waves

* From ExE:w;tI:I:k&kxE:a)ﬂI:I:I:I:i&kxE
ou
where 4, is the unit vector along & .

e With k=% n= W\ oo A 1, /&, EXpression for H can be written as
c

g = OVHENHE, g NEE s Eo a,xE _&kXE

a XE:} H = = =
oup, NI Jule 1

n=4/p/ ¢ isthe medium intrinsic impedance and we can define

1, =14y & = 1207 =377[Q] as the free space intrinsic impedance.

where

« Similar expression for £ in terms of A can be found to be
E=-na,xH

E(z, 0) = a,10~* cos 4: z

-
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Fresnel Reflection & Transmission Coefficients

* The case of £ Perpendicular Polarization:

* The interface is in xy plane
* Plane of incidence is xz plane

* Incident waves are £,,H,,K,

* Reflected waves are E,,H K]

« Transmitted waves are £,,H,,K,

* 6, = Angle of incidence,
6/ =Reflection angle
0, = Transmitted angle

* As stated earlier this geometry is for
E L (E perpendicular to the plane
of incidence) or TE (electric field is transverse to the propagation direction) or
o polarization

E, one_"’k"fe”“”&y where k, =k, a, +k_a_ with

Ix"x 127z

. o . 10 1) 1)
k, =k sin6, :?n1 sind, and k,_ =k, cos6, :;n1 cosé, and £k, :;n1 =?,/,ulgl .

Then k. =k (sin 0,4 +cos6,a.) and we have E. = E e /hlindxreosts) jor 5
1 1 1% x 17z i 0 y

* Note also that

2 2

2 2 42 . 2 2 | 2 W 2 . 2 @ .2, O
k. +k. =k =k, =k -k, —\/c—zn1 —c—2n1 sin 6, —;nnll—sm 6, —;nlcosﬁ1

- q.xE. - FE R ) IR P as) i
« From H, = %"=i we have H, ==%(-a, cosf, +sin 4, Je /tintrreostiz)gjon

n, m



53

* For Reflected wave we have

=k1,=§'\//ulgl =§n=‘]€1‘=kl :>k1’:k1

k|l =—k/cosOa, +k/sinda, since k| =k, then k| =—k cosba_+k sinbla,
The reflected £ and H are then
E, = rE, exp|- jk,(sin @x —cos z)|exp[ jart] a,

- KT ot 5
E =rEe""e"a,

H, = rEy [cos @ a, +sin @ a.]exp[- jk,(sin @x —cos Oz )|exp| et |

r

m
e Transmitted E and H are @
E, =tE e‘jkz'Fej”’t&},
k - k2x x +k22 z

. ® .
k, =k,sinf, = ?nz sin 6,

@
k,. =k,cos0, = ;nz cos b,

k _a) _a)
2 = _;\/,uzgz

c
E, = tE, exp|— jk, (sin 6,x + cos 6,z )|exp[ ot a,

* Note that k2x2 +k, =k’ =

—k,, =

\/ n2 sin’ @, = wnzwll—sinz 0, = an cosd, i.e.k,, =Qn2 cosd,
c c c
H= i( cos6,a_+sin6,a_)exp|- jk, (sin 92x+cosﬁzz)]exp[ja)t]

« We now apply the B.C. at xy plane and z = 0, requiring tangential £ and H to be
continuous (two good dielectric)

(E,+E,)

r /tangential = (El‘ )tangential

(H#,+H,)

tangential = (H t )tangential

* Note that tangential components are along x and y

— jk; sin G x —jkysin@x __ — jk, sin O,x
Eye +rEye =tk e

— ﬂcos Hle*jkl sin G x + r_E‘OCOS 911 e—jkl sin G{x __ tEO cos ezefjkz sin O,
771 771 772
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!

* The above is a set of 4 equations and 4 unknowns (6, ,60,,r,t). It can be reduced to
2 equations and 2 unknown. Once this is done we have

0, =6,
k,sin@, =k,sin0,

* 0, = 0, is the first Snell’s Law of Refraction (i.e. the incident & reflected angles are
equal)
* Second Snell’s Law of Refraction
k sin® =k, sing, <k, =k, < Znsing =2n,sin6, = n,sin6, = n,sin 6,
c

This says that tangential component of the propagation vector across the interface is
continuous.

* The use of the two Snell’s law (above)

will reduce our set of 4 equations and 4 X
unknowns to 2 equations and 2 unknowns: 4
r+l=t (1) k
0 —t 2z
E8A (r—1)="Lcos 8, (2) >
U m, k., A
» (1) and (2) can be solved to give > , .
. lfr _m cos@, —mn, cosb, k<91 -
‘E,.‘ 1, cos@, +n, coso, Al k.
- E, _ 2n, cos6, 6,
‘Ei‘ n, cosf, +n, cosb, ky.

* Using 17 = 4/¢¢/ & and multiplying top and bottom by ,/&,&,44, we have
i, €, €080, — 1,/ € cosb, & 1y 14, €08 O, — [ 1, &, 1, cos 6,

r= =
\/,uz /&, cosb, + \/,ul /& cosb, \/51/11 M, cos O, + \/,uzgz M, cos b,

[ a
; &\ 1, COS 01 _; &1, 1y COS 92

(2 (0
" 1y 1, cOS 6, +; &M, 14y €08 0,
* Recall

@ 0]
k., =k cosf = ;nl cosf, = = M,E, cos O,

@ @
k,, =k,cos0, = ?nz cosb, = ;w/,uzgz cosb,



* Hence
.= Mok, — ks,
ok, + ks,
and similarly
_ 2u,k,,
ok, + ks,
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(D

2)

* Note that (1) and (2) are reflection and transmission coefficient (Fresnel field

coefficients) for TE or E | polarization.

Two Interface Problem

« We consider TE or E perpendicular
polarization. The Fresnel reflection
coefficients at each interface can be
written as:

p = Mk — ks,
2 =
ok, + ik,
_ 2u,k,,
=
ﬂZklz +/Lllk22
— k= ks, 12
z ik, + ks, 23
_ Mk, — ik 12
h=—7 "7 ="
ik, + ok, 21
; 2usk,, 1-2
z ky, + ks, 253
*At z=0

(1) rA=r,A+t,D
2) C=t,A+r,D

* At z = d (slab thickness isd )

(3) At =t,,Ce ™

(4) D’ =, Ce ™" =

(5) D =r,,Ce™/* =r, Ce™? where

6) ¢ =—k,.d=-2n, cos0,d
C

* Use (5) in (2) then

® ©)

zulagl /u2382

ks

1z z

X
4
'ul i gl luz ’ ‘92
klZ kZZ
Ae*fklzz C’e*szzz
— —>
rAeJrjklZz De+jk2:z
< <«
z =0

I* @

Hs, &5




56

(1) C=t,A+r,r,Ce™’ =

@ Cc=—_~T 4

+2j¢
1—r, rye

« Using (2) in At =t,,Ce”™* =t1,,Ce’’ (Eq. 3-page 55), we have

i
ly folye”’
oy = t =t=

TE

— 1)
_ _ +2j¢ (

1-r,rye 1-r,r,e

At =t

* In a similar manner (HW) we can show
+2j¢
TE Loty e

r-=r=r, +—1 oy (2)
e

* Note if medium 1 and 3 are the same
_ wk,, — k.

then r,, =1, ="+ = and
o k. + ik, . o @ y
foo—t = 2uk,, z
3=l = .
ks, + 1ok, @ @ @

Then (1) and (2) can be written as

Then ¢'* = totye™” ot Fab #ho&
- 1—(r )ze”’”j
21
totr,e !
TE _ 12°21721
ro=n,+

1- (”21 )2 e

$=—k,.d=-2n, cos0,d
C

» From the expression for »'" we see that
if r,, =1, =0, then 7' =03 i.e. there is z=0 z =d
no reflection from the slab. This is

called the matched condition.

* Recall 1, = ko = pok, -1, then 1, =r, =0 if

k. + k.

pky. = k. = 1,2 n, cos0, = 11, L n, cos, =
C C
My K&, COS 0, = My 1, &, COS 6, = 17,cos06, =17, 0506,

« What happens to ¢'" (transmission coefficient) under matched condition.
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t12tzle+j¢

1- (’”21 )Ze+2j¢

_ 25k, and £, = 2k,
Mok, + ik, ik, + ok,

(u,k,. = 1,k ) we have ¢, =¢,, =1, which then implies

" " =" =/ and r™ =0. This says that under matched condition the

slab only inserts a phase on the traveling wave.

* Note that with 7, =1, =0 = '" = =t,t,,¢"’?. Recall that

. . Hence under matched condition

=1,1,e e

* At normal incidence 6, = 6, =0, the matching condition (no reflection from the slab)
given by 77, cosé, =7, cos6, will simplify to 77, =7,.

* Note that under matched condition with ™ =¢™/% = ¢ 7**? we can write
00 g d_d_
ow Ow 0w Owl/dk,, v,

—0¢/ 0w is called the group delay.

v, =——  where we will later see
& —0¢/0w

- Final Remarks: you should study (self study) topics such as
critical and Brewster angles.



