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Auxiliary Vector Potential 
 

Constructing solutions using auxiliary vector potentials 
 
• The objective of EM theory is to find the possible EM field configurations (modes) 
for a given boundary value problem involving wave propagation, radiation, or 
scattering. 
 
• This can be done by finding the electric and magnetic fields ( E

v
and H

v
) or equally 

obtaining the auxiliary vector potentials ( A
v

and F
v

) 
 
• In addition to auxiliary vector potentials A

v
and F

v
there are other possible set.  For 

example, Hertz vector potentials ( eΠ and hΠ ). Here, we only concentrate on A
v

and F
v

 
 
• The path for solving EM field configuration is then as follows 
 

 
 
• Depending on problem at hand, path-2 maybe easier than path-1 
 
• Traditionally E

v
and B

r
are viewed as physical field quantities, whereas vector 

potential ( A
v

) and its scalar counter part ( eφ ) are considered as mathematical 
constructs.  However, there are diverging views on this point!!! 
 
• It is interesting to note that Maxwell himself derived many of his results by using the 
concept of vector potential ( A

v
) which he called “electromagnetic momentum.”  

However this approach was later criticized by other practitioners such as Hertz and 
Heaviside. 
 

Sources 
MJ
vv

,  
HE
vv

,
Fields

Vector 
potentials 

FA
vv

, or 

he ΠΠ ,  

Integration 
path-1 

Differentiation  
Path-2 

Integration 
Path-2 
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The question of the propagation of, not merely the electric potential Ψ  but the 
vector potential A

v
 ... when brought forward, prove to be one of a metaphysical 

nature ... the electric force E
v

 and the magnetic force H
v

 ... actually represent 
the state of the medium everywhere.  Heaviside, Philosophical Magazine, 1889. 

 
• Here is what Hertz says about Maxwell’s approach: 
 

I may mention the predominance of the vector potential in [Maxwell’s] 
fundamental equations.  In the construction of new theory the potential served 
as a scaffolding ... it does not appear to me that any ... advantage is attained 
by the introduction of the vector potential in the fundamental equations. C. 
A. Mead, Collective electrodynamics, 2000.  

 
• Here is different (more modern) point of view: 
 

... the vector potential which appears in quantum mechanics in an explicit form 
produces a classical force which depends only on its derivatives.  In quantum 
mechanics what matters is the interference between nearby paths; it always turns 
out that the effects depend only on how much the filed A

v
 changes from point 

to point, and therefore only on the derivatives of A
v

 and not on the value 
itself.  Nevertheless, the vector potential A

v
 (together with the scalar potential 

φ  that goes with it) appears to give the most direct description of the physics.  
This becomes more and more apparent the more deeply we go into the quantum 
theory.  In the general theory of quantum electrodynamics, one takes the vector 
and scalar potentials as the fundamental quantities in a set of equations that 
replace the Maxwell equations: E

r
 and B

r
 are slowly disappearing from the 

modern expression of physical laws, they are being replaced by A
v

 and φ .  
Feynman, Leighton, and Sands, Lectures on Physics, Vol. II, 1984. 
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Equations governing vector potential A
v

 
 
• Since ⇒=⋅∇ 0B

v
         (1) 

ABA

vv
×∇=  and         (2) 

AH A

vv
×∇=

µ
1          (3) 

Subscript A  is to remind us that AB
r

 and AH
r

 are due to vector potential A  
 
• For 0=M

v
 (no magnetic source) 

AA HjE
vv

ωµ−=×∇ (Faraday’s Law)       (4) 
 
• Use (3) in (4) ⇒  

⇒







×∇−=×∇ AjEA

vv

µ
ωµ 1  ( ) 0=+×∇ AjEA

v
ω      (5) 

 
• Since curl of gradient of any scalar is zero, i.e., ( ) 0=∇−×∇ eφ , then from (5) we 
have ⇒−∇=+ eA AjE φω

vv
eA AjE φω ∇−−=

vv
 where     (6) 

≡eφ Scalar potential 
≡A

v
Vector potential 

 
• Equations (6) and (3) are the expression for E

v
and H

v
in terms of A

v
and eφ  

 

• We note that from AH A

vv
×∇=

µ
1 , for a homogeneous medium we can write  

⇒×∇×∇=×∇ AH A

vv
µ  ( ) AAH A

rvv 2∇−⋅∇∇=×∇µ     (7) 
 
• Using Ampere’s Law AA EjJH

vvv
ωε+=×∇  in (7) we have 

( ) AAEjJ A

vvvv 2∇−⋅∇∇=+ ωεµµ        (8) 
 
• Previously we found the expression for AE

v
to be eA AjE φω ∇−−=

vv
.  Using this in 

(8) we have 
[ ] ( ) AAAjjJ e

vvvv 2∇−⋅∇∇=∇−−+ φωωεµµ       (9) 
 
• Recall that 22 βµεω =  then (9) can be written as 

( ) JjAAA e

vvvv
µωεµφβ −+⋅∇∇=+∇ 22  

 
• We have defined the curl of A

v
as ABA

vv
×∇= , we are at liberty to define the A

v
⋅∇ . 
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• In light of ( ) JjAAA e

vvvv
µωεµφβ −+⋅∇∇=+∇ 22      (1) 

let us define the divergence of A
r

 to be 
ejA ωεµφ−=⋅∇

v
         (2)  

 
• Using (2) in (1) we have 

JAA
vvv

µβ −=+∇ 22  and         (3) 

A
je

v
⋅∇−=

ωεµ
φ 1          (4) 

 
• Finally, our expressions for AE

v
 and AH

v
 in the last page [Eqs. (6) and (3)] can be 

written as 

( ) AjAjAjE eA

vvvv
ω

ωµε
ωφ −⋅∇∇

−
=−−∇=       (5) 

AH A

vv
×∇=

µ
1           (6) 

 
• Now, equations (5) and (6) are expressions for AE

v
 and AH

v
 in terms of A

v
 only 

subject to Lorentz gauge. 
 
 

Equations governing the vector potential F
v

 
 
• Consider a region of space free of charges, i.e. 0ave =q , then 

⇒=⋅∇ 0D
v

          (1) 
⇒×−∇= FDF

vv
         (2) 

FEF

vv
×∇−=

ε
1          (3) 

Subscript F is to remind us FD
v

is due to vector potential F
v

 
 
• Recall that Ampere’s Law with 0=J

v
, is given by 

FFFF H
j

EEjH
vvvv

×∇=⇒=×∇
ωε

ωε 1       (4) 

 
• Use (4) in (3) and we have 

⇒×∇−=×∇⇒×∇−=×∇ FjHFH
j FF

vvvv
ω

εωε
11  

( ) 0=+×∇ FjH F

vv
ω          (5) 
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• Compare ( ) 0=+×∇ FjH F

vv
ω  with null identity ( ) 0=∇−×∇ mφ , then it is clear that  

⇒−∇=+ mF FjH φω
vv

 

mF FjH φω ∇−−=
vv

         (1) 
 

• For homogenous media, from FEF

vv
×∇−=

ε
1  we have ⇒×∇×∇−=×∇ FEF

vv

ε
1  

( ) FFEF

vvv 211
∇+⋅∇∇−=×∇

εε
       (2) 

 
• From Faraday’s Law we have  

FF HjME
vvv

ωµ−−=×∇ ,        (3) 
then substitute (3) in (2) 

( ) FFHjM F

vvvv 211
∇+⋅∇∇−=−−

εε
ωµ       (4) 

 
• But we already found an expression for FH

v
in (1).  Use (1) in (4), and we have  

( )mjFMFF ωµεφεβ +⋅∇∇+−=∇+
vvvv 22       (5) 

Where again µεωβ 22 =  
 
• Once again curl of F

v
is defined by FDF

vv
×−∇= .  We are at liberty to choose the 

divergence of F
v

.  Let  
⇒−=⋅∇ mjF ωµεφ

v
         (6) 

F
jm

v
⋅∇

−
=

ωεµ
φ 1          (7) 

 
• Using (6), (5) simplifies to  

MFF
vvv

εβ −=+∇ 22          (8) 
 
• Finally, note that FH

v
 [Eq. (1)] and FE

v
 [Eq. (3) of last page)] can be written in terms 

of F
v

 according to 

( )FjFjFjH mF

vvvv
⋅∇∇−−=∇−−=

ωεµ
ωφω  

FEF

vv
×∇−=

ε
1  

 



 63

Summary 
 
1. Find A

v
from JAA µβ −=+∇

vv 22  µεωβ 22 =      (1) 
2. Find F

v
from MFF

vvv
εβ −=+∇ 22        (2) 

3. Find AH
v

from AH A

vv
×∇=

µ
1        (3) 

4. Find AE
v

from ( )AjAjEA

vvv
⋅∇∇−−=

ωµε
ω 1  or AA H

j
E

vv
×∇=

ωε
1   (4) 

5. Find FE
v

from FEF

vv
×∇−=

ε
1        (5) 

6. Find FH
v

from ( )FjFjH F

vvv
⋅∇∇−−=

ωµε
ω 1  or FF E

j
H

vv
×∇

−
=

ωµ
1   (6) 

7. The total E
v

is given by  

( ) FAjAjEEE FA

vvvvvv
×∇−⋅∇∇−−=+=

εωµε
ω 11      (7) 

or 

FH
j

EEE AFA

vvvvv
×∇−×∇=+=

εωε
11       (8) 

8. The total H
v

is given by  

( )FjFjAHHH FA

vvvvvv
⋅∇∇−−×∇=+=

ωµε
ω

µ
11      (9) 

or 

FFA E
j

AHHH
vvvvv

×∇−×∇=+=
ωµµ
11       (10) 
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Solutions for A
v

 and F
v

 
 
• Recall that governing differential equations for A

v
and F

v
are 

 
JAA
vvv

µβ −=+∇ 22     (1) 
MFF
vvv

εβ −=+∇ 22     (2) 
 
• For source located at ( )zyx ′′′ ,,  and observation 
point distance R from the source, the solutions to 
(1) and (2) are given by 

( ) ( ) vd
R

ezyxJzyxA
Rj

v

′′′′=
−

′
∫∫∫

β

π
µ ,,

4
,,

rv
 (3) 

( ) ( ) vd
R

ezyxMzyxF
Rj

v

′′′′=
−

′
∫∫∫

β

π
ε ,,

4
,,

rv
 (4) 

where J
v

and M
v

have dimensions proportional to 1/m2 
 
• For sJ

v
and sM

v
dimensions proportional to 1/m we have 

( ) ( )∫∫
′

−

′′′′=
s

Rj

s sd
R

ezyxJzyxA
β

π
µ ,,

4
,,

rr
 (5) 

( ) ( )∫∫
′

−

′′′′=
s

Rj

s sd
R

ezyxMzyxF
β

π
ε ,,

4
,,

rv
 (6) 

 
• For electric and magnetic current densities eI

r
 [Ampere] and mI

r
 [volt] we have 

( ) ( )∫ ′′′′=
−

c

Rj

e ld
R

ezyxIzyxA
β

π
µ ,,

4
,,

rv
 (7) 

( ) ( )∫ ′′′′=
−

c

Rj

m ld
R

ezyxIzyxF
β

π
ε ,,

4
,,

rv
 (8) 

 

x

y

z

rv

r ′v

R
r

 

( )zyx ,,

( )zyx ′′′ ,,
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TEM, TE and TM modes 
 
• The transverse electromagnetic field configuration is a mode for which electric and 
magnetic field components are transverse to a given direction.  This direction often, 
but not always, is the path that the wave is traveling. 
 
• For TE mode the electric field is transverse to a given direction and for TM mode 
the magnetic field is transverse to a given direction.  Again, for TE and TM modes the 
aforementioned direction is often, but not always, the direction of propagation. 
 

The conditions on auxiliary vector potentials A
v

 and F
v

 
for TEM, TE and TM modes 
 
• Recall that E

v
and H

v
in terms of A

v
and F

v
were given by 

( ) FAjAjEEE FA

vvvvvv
×∇−⋅∇∇−−=+=

εωµε
ω 11      (1) 

( )FjFjAHHH FA

vvvvvv
⋅∇∇−−×∇=+=

ωµε
ω

µ
11      (2) 

 
• Let 

( ) ( ) ( ) zxyyxx azyxAazyxAazyxAA )))v
,,,,,, ++=      (3) 

( ) ( ) ( ) zzyyxx azyxFazyxFazyxFF )))v
,,,,,, ++=      (4) 

 
• Use (3) and (4) in (1) and (2).  We get 




















∂
∂

−
∂

∂
−










∂
∂

+
∂∂

∂
+

∂∂
∂

−−

+



















∂
∂

−
∂
∂

−










∂∂
∂

+
∂

∂
+

∂∂
∂

−−

+



















∂

∂
−

∂
∂

−










∂∂
∂

+
∂∂

∂
+

∂
∂

−−=

y
F

x
F

z
A

zy
A

zx
AjAja

x
F

z
F

zy
A

y
A

yx
AjAja

z
F

y
F

zx
A

yx
A

x
AjAjaE

xyzyx
zz

zxzyx
yy

yzzyx
xx

εωµε
ω

εωµε
ω

εωµε
ω

11

11

11

2

222

2

2

22

22

2

2

)

)

)v
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• For H
v

we have 
 




















∂

∂
−

∂

∂
+










∂
∂

+
∂∂

∂
+

∂∂
∂

−−

+



















∂

∂
−

∂
∂

+










∂∂
∂

+
∂

∂
+

∂∂
∂

−−

+



















∂

∂
−

∂
∂

+










∂∂
∂

+
∂∂

∂
+

∂
∂

−−=

y
A

x
A

z
F

zy
F

zx
FjFja

x
A

z
A

zy
F

y
F

yx
FjFja

z
A

y
A

zx
F

yx
F

x
FjFjaH

yyzyx
zz

yzzyx
yy

yzzyx
xx

µωµε
ω

µωµε
ω

µωµε
ω

11

11

11

2

222

2

2

22

22

2

2

)

)

)v

  (1) 

 
• From expression for E

v
and H

v
in terms of A

v
and F

v
 we can see there are at least 3 

ways for which we can obtain a TEM mode with respect to z-direction, i.e. TEMz 
(HW) 
 
• For example if all the condition listed below are satisfied we have a TEMz mode 

0=== zyx AAA  and 0== yx FF  and y and 0≠
∂
∂
x

 and 0≠
∂
∂
y

 and 

( ) ( ) zj
z

zj
zz eyxFeyxFF ββ +−−+ += ,, , 

then 
} }

01
000

2

2

0

220

=
















∂
∂

−
∂

∂
−



















∂
∂

+
∂∂

∂
+

∂∂
∂

−−=
y

F
x

F
z
A

zy
A

zx
AjAjE xyzy

o

x
zz εωµε

ω

876876876
876

  (2) 

} }

=
















∂

∂
−

∂

∂
+



















∂
∂

+
∂∂

∂
+

∂∂
∂

−−=

00

2

2

0

2
0

2 11
y

A
x

A
z
F

zy
F

zx
FjFjH yyzyx

zz µωµε
ω

876876

 

( ) ( )[ ] 0,,
2

=+−=++− −−+
zz

zj
z

zj
zz FjFjeyxFeyxFjFj ωω

ωµε
βω ββ   (3) 

 
• Note that from (2) and (3) 0== zz HE . 
 
• We can further calculate the xE , yE , xH , and yH  to be 

}

⇒
















∂

∂
−

∂
∂

−



















∂∂
∂

+
∂∂

∂
+

∂
∂

−−=

00

2

0

2
0

2

20
11

z
F

y
F

zx
A

yx
A

x
AjAjE yzzyx

xx εωµε
ω

876876876
876

 

( ) ( ) −+−−+ +=
∂
∂

−
∂
∂

−= xx
zj

z
zj

zx EEeyxF
y

eyxF
y

E ββ

εε
,1,1  
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}

⇒
∂
∂

=
















∂
∂

−
∂
∂

−



















∂∂
∂

+
∂

∂
+

∂∂
∂

−−=
x
F

x
F

z
F

zy
A

y
A

yx
AjAjE zzxzyx

yy εεωµε
ω 111

00

2

0

2

2
0

20
876876876

876
  (1) 

( ) −+−−+ +=
∂
∂

+
∂
∂

= yy
zj

z
zj

zy EEeF
x

eyxF
x

E ββ

εε
1,1      (2) 

and it can be shown 
−+−+ +−=+= yyxxx EEHHH

µ
ε

µ
ε  (HW)      (3) 

−+−+ −=+= xxyyy EEHHH
µ
ε

µ
ε , (HW)      (4) 

Where expression for −+−+
xxyy EEEE ,,,  were given previously (e.g. 

( ) zj
zx eyxF

y
E β

ε
−++

∂
∂

−= ,1 and ( ) zj
zx eyxF

y
E β

ε
+−−

∂
∂

−= ,1 )    (5) 

 

Transverse magnetic wave WRT z-direction (TMz) 
 
• To ensure that wave is a transverse magnetic (TM) field WRT z-direction, it is 
sufficient to ensure the auxiliary vector potential A

v
 has only z-component and 

0=F
v

. 
 
• For TMz 

( )zyxAaA zz ,,)v
=  and 0=F

v
        (6) 

 
• The field components are then given by  

zx
AjE z

x ∂∂
∂

−=
21

ωµε
         (7) 

zy
AjE z

y ∂∂
∂

−=
21

ωµε
         (8) 

zz A
z

jE 







+

∂
∂

−= 2
2

21 β
ωµε

        (9) 

zx A
y

H
∂
∂

=
µ
1           (10) 

x
AH z

y ∂
∂

−=
µ
1          (11) 

0=zH           (12) 
 
• All the field components of the TMz mode can also be expressed in terms of zE   
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Transverse electric field WRT z-direction (TEz)  
 
• To have TEz we require F

v
to have only z-component and 0=A

v
, i.e.,  

0=A
v

 and ( )zyxFaF zz ,,)v
=   (1) 

 
• The field components are given by 

y
FE z

x ∂
∂

−=
ε
1  

x
FE z

y ∂
∂

=
ε
1  

0=zE  

zx
FjH z

x ∂∂
∂

−=
21

ωµε
 

zy
FjH z

y ∂∂
∂

−=
21

ωµε
 

zz F
z

jH 







+

∂
∂

−= 2
2

21 β
ωµε

 

 
• All the field components of the TEz mode can also be expressed in terms of zH  
 

Rectangular metallic wave guide 
 
• Rectangular metallic waveguides are routinely used at RF and microwave 
frequencies. Their study is not only motivated by their use as RF/microwave 
components, but will help us better understand the concept of mode and guided wave 
propagation 
 
• In studying the guided wave structures we are usually interested in parameters such as: 
field configurations (modes) that are supported by the structure, the structure cutoff 
frequency, guided wavelength, wave impedance, phase constant, attenuation 
constant, etc. 
 
• For metallic rectangular waveguide, it can be shown that although TEM field 
configuration is the lowest order mode, it does not satisfy the boundary conditions 
and as such, the waveguide does not support TEM modes 
 
• However, the TE and TM modes satisfy the required boundary conditions and as 
such are supported by the structure 
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Transverse Electric Field TEz 
 
• Consider the metallic waveguide of size ba× as shown. The waveguide is infinite in 
the z-direction 
 
• From our previous discussion we have seen that TEz modes are obtained if 

0=A
v

 and ( )zyxFaF zz ,,ˆ=
v

 which implied 

y
FE z

x ∂
∂

−=
ε
1  

zx
FjH z

x ∂∂
∂

−=
21

ωµε
 

x
FE z

y ∂
∂

=
ε
1  

zy
FjH z

y ∂∂
∂

−=
21

ωµε
 

0=zE  

zz F
z

jH 







+

∂
∂

−= 2
2

21 β
ωµε

 

 
• F
v

must satisfy the vector differential equation 
⇒=+∇ 022 FF

vv
β ( ) ( ) ⇒=+∇ 0,,,, 22 zyxFzyxF zz β  
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• Note that ( )zyxFz ,,  is a scalar function that can be written as (using separation of 
variables)  

( ) ( ) ( ) ( )zhygxfzyxFz =,,  
 
• Also recall that solutions to 022 =+∇ zz FF β are either standing waves (sinusoidal) 
or traveling waves (exponential with complex argument) 
 
• The particular form (standing wave or traveling wave) is chosen based on the 
boundary conditions to be satisfied 
 
• In the case of our metallic waveguide solutions in x and y must be standing waves 
and solution in z-direction (guide is infinite in the z-direction) must be traveling wave 
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• Hence  
 

( ) ( ) ( ) ( )
( ) ( )[ ] ( ) ( )[ ] [ ]zjzj

yyxz

z

zz eBeAyDyCxDxC
zhygxfzyxF

ββββββ +− +⋅+⋅+=

=

332211 sincossincos

,,
 

with 
µεωββββ 22222 ==++ zyx  

 
• Recall that for tje ω time dependency, zj ze β− is a positively traveling wave (wave 
travels in positive z-direction) and zj ze β+  is a negatively traveling wave (wave travels in 
negative z-direction) 
 
• If source is located such that only positively traveling wave is present, then 

00 33 =⇒=+ BeB zj zβ  
 
• If source is located such that only negatively traveling wave is present, then 

00 33 =⇒=− AeA zj zβ  
 
• If both positively and negatively traveling waves are 
present (a waveguide terminated on a load that is not 
matched), then both zj zeA β−

3 and zj zeB β+
3 must be included 

 
• Here, for simplicity, we assume that only positive traveling 
wave exist 03 =⇒ B  
 
•The zF is then given by 

( ) ( ) ( )[ ] ( ) ( )[ ] zj
yyxxz

zeAyDyCxDxCzyxF βββββ −+ +⋅+= 32211 sincossincos,,  (1) 
 
• We impose the boundary conditions on the top, bottom, left and right walls of the 
metallic waveguide, assuming a perfect electric conductor (PEC) boundary 
condition, i.e. E

v
and H

v
tangential are zero on the walls 

 
• The boundary conditions are: 

( ) ( ) 0,,0,0,0 ==≤≤==≤≤ zbyaxEzyaxE xx , Bottom and top walls for xE  (2) 
( ) ( ) 0,,0,0,0 ==≤≤==≤≤ zbyaxEzyaxE zz , Bottom and top walls for zE  (3) 
( ) ( ) 0,0,,0,0 =≤≤==≤≤= zbyaxEzbyxE yy , Left and right walls for yE  (4) 
( ) ( ) 0,0,,0,0 =≤≤==≤≤= zbyaxEzbyxE zz , Left and right walls for zE  (5) 

 
• Note that the boundary conditions (3) and (5) are not independent and they 
represent the same boundary conditions as (2) and (4). 
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• The necessary and sufficient conditions are to satisfy either (2) or (3) ( xE  and zE  
at bottom and top walls) and either (4) or (5) ( yE  and zE  at the left and right walls) 
 
• Furthermore, note that for TEz modes by definition zE is zero. This means that the 
necessary and sufficient B.C.’s for TEz are (2) and (4) of the last page ( xE  at the 
bottom and the top and yE  at the left and right walls) 
 

( ) ( ) 0,,0,0,0 ==≤≤==≤≤ zbyaxEzyaxE xx  
( ) ( ) 0,0,,0,0 =≤≤==≤≤= zbyaxEzbyxE yy  

 
• Recall that the vector potential for TEz was given as [Eq. (1), last page] 

( ) ( ) ( )[ ] ( ) ( )[ ] zj
yyxxx

zeAyDyCxDxCzyxF βββββ −+ +⋅+= 32211 sincossincos,, .  We then 
have 
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• From ( ) 00,0,0 2 =⇒==≤≤ DzyaxEx  
 
• From ( ) ( ) ⇒=⇒==≤≤ 0sin0,,0 bzbyaxE yx β  

πβ nby =  3,2,1,0=n  or equally, 

b
n

y
πβ = 3,2,1,0=n  

 
• yβ  is sometimes referred to as eigenvalue 
 
• If we use our newly found results, we have 

( ) ( ) ( )[ ] zj
xxz

zeAy
b

nCxDxCzyxF βπββ −+ 

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

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• The yE can be found from 

( ) ( )[ ] xj
xx

xz
y

zeAy
b

nCxDxC
x
FE βπββ

ε
β

ε
−





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∂

= 3211 coscossin1  

 
• Boundary conditions for yE at left wall is  

( ) 00,0,0 1 =⇒=≤≤= DzbyxEy  
 
• Boundary condition for yE at right wall is  

( ) ⇒=≤≤= 0,0, zbyaxEy  ( ) ⇒= 0sin axβ  

x

y  

z  

ax =

by =  

µε ,

0=y  
0=x



 72

πβ max = 3,2,1,0=m or equally 

a
m

x
πβ = 3,2,1,0=m  

 
• Putting it all together, the vector potential +

zF is given by 

( ) zj
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zz ey
b
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= coscoscoscos,, 321  

with 
3,2,1,0
3,2,1,0

=
=

n
m

but 0≠= nm  

mnA  is a constant = 321 ACC  
 

Propagation constant (wave numbers) and wavelengths 
in the x , y  and z  direction 
 
• From our previous discussion it is clear that propagation constant (or wave number) 
along x ( )xβ and along y ( )yβ can be written as 
 

2,1,0 ;22
==⇒== m

m
a

xa
m

xx λ
λ
ππβ       (1) 

2,1,0 ;22
==⇒== n

n
b

yb
n

yy λ
λ
ππβ  and with 0≠= nm ,    (2) 

where we have also defined the wavelength along x  to be xλ  and along y  to be yλ  
 
• Recall that µεωββββ 22222 ==++ zyx or equally well: 

2222

1111
λλλλ

=++
zyx

 where λ is the wavelength in the medium with ε and 

µ (material inside the guide) 
 
• From (1) and (2) note that xβ and yβ are discrete (one can say they are quantized), 
where as zβ is a continuous parameter. 
 
• Note that in principle there are infinite numbers of possible xβ and yβ (eigenvalues) 
hence there are infinite number of TEz modes that satisfy the wave equation and the 
given boundary condition. 
 

• From 
a

m
x

πβ = and 
b

n
y

πβ = and µεωββββ 22222 ==++ zyx  we can see that  
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where by definition: ≡cβ cutoff propagation constant or cutoff wave number 
 

• Note that 
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• Hence, the cutoff frequency ( cf ) is given by  
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• From the expression 

0=
=

z
c β

ββ we can see why cβ is called the cutoff propagation 

constant.  For this wave number, 0=zβ  and the wave no longer travels along the z-
direction. 
 
• The above can be more clearly seen from  
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• The field components for TEmn

+z are now given by  
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• To appreciate the importance of the cutoff conditions consider the following: 
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• ( ) 0=mnzβ      for cc ff =⇔= ββ  
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• If we only consider the positively traveling wave we must choose the sign in front 
of the square root appropriately, i.e. 
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• Since electric and magnetic fields are proportional to tjzj ee z ωβ− then 
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