Problem Set #5 ECE357 /ECE320 University of Toronto

- 1) A vector field $\vec{A} = \hat{a}_p (3\cos\phi) \hat{a}_{\phi} 2\rho + 5\hat{a}_z$ is expressed in cylindrical coordinates. Find its representation in rectangular coordinate system.
- 2) Consider the central force, $\vec{F} = \frac{1}{r^2} \hat{a}_r$. Calculate the work done in presence of the above field in moving from $P_1(1,1)$ to $P_2(2,1)$ along the line P_1P_2 .
- 3)
- a. Let \vec{r} be the position vector, pointing from origin to the point of observation P. Show that $\nabla |\vec{r}| = \nabla r = \frac{\vec{r}}{|\vec{r}|} = \frac{\vec{r}}{r} = \hat{a}_r$ where \hat{a}_r is the unit normal in the direction of \vec{r} .

b. Function g(r) depends only on the distance between the source point (primed coordinates) and the observation point (unprimed coordinates), see Fig. 2. Prove that $\nabla g(r) = \nabla f(R) = \hat{a}_R \frac{\partial f(R)}{\partial R}$. Use this information to calculate the gradient of $g(x, y, z) = f(R) = \sin\left(\pi \frac{R^2}{4}\right)$.

- 4) Consider a plane wave $\vec{E} = \vec{E}_o e^{-j\vec{k}\cdot\vec{r}+j\omega t}$ propagating in a homogeneous, lossless, source free region for which $\varepsilon > 0$ and $\mu > 0$ and \vec{E}_o is constant.
 - a. Show that $\vec{K} \perp \vec{E}$ and $\vec{K} \perp \vec{H}$.
 - b. Show that \vec{K}, \vec{E} , and \vec{H} form a right hand triplet.
 - c. Now suppose in a medium both permittivity and permeability are negative, what is the relation between \vec{K}, \vec{E} , and \vec{H} . Has the direction of the Poynting vector changed from the case considered in (b).

5) Starting with the differential form of the Maxwell's equations, find their integral form formulation.