ECE 357S Waves on Transmission Lines - Laboratory Worksheet

Section A: Value of $Z_o =$

Section B: Generator Voltage $V_g = V_l(t,0) = R_{series} = Z_o =$

Section C: Refer to the figure below;

1. Plot *V* vs. *t* at *C*, *D*, *E*, *F* for $R_L = 50\Omega$.

2. Plot *V* vs. *z* for pertinent values of *t* (complete at home).

Section D: Complete the following table;

z (m)	t (s)	U(m/s)
C		
D		
E		
F		

Average v =

Dielectric Constant of the insulating medium (ε) =

Section E: Complete the following table;

$R_L(\Omega)$	$\Gamma_L(meas) = V_{reflect}/V_{incident}$	Γ_L (calculated)
$0 \ \Omega$		Complete at home
20 Q		Complete at home
100 Q		Complete at home
∞		Complete at home

- 1. Plot *V* vs. *t* at *C* for $R_L = 0 \Omega$, 20 Ω , 100 Ω and ∞
- 2. Plot *V* vs. *t* at *F* for $R_L = 20 \Omega$, 100 Ω and ∞
- 3. Plot *V* vs. *t* at *C*, *D*, *E*, and *F* for $R_L = 20 \Omega$.
- 4. Plot *V* vs. *z* for pertinent values of *t* for $R_L = 20 \Omega$ (complete at home).

Section F: Plot *V* vs. *t* at *C*, *D*, *E*, and *F* (complete at home).

Section G:

Complete the following table with the line terminated in a short circuit:

	0		
Frequency (MHz)	Length (λ)	V_1	V_g

Complete the following table with the line terminated in a 0.01 μ f capacitor:

Frequency (MHz)	Length (λ)	V_1	V_g

Figure 2. Transmission Line Test Set