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1. Introduction, general resonance 

A linear, single input resonant system is an assembly of objects exhibiting all of the following 

properties: 

(i) Power input by external source at a frequency produces a steady state response at the same 

frequency. 

(ii) Some of the energy supplied by the source is stored in the system. 

(iii) There exists at least one frequency, such that no portion of power absorbed by the system at this 

frequency is returned to the source. 

The definition given above will be illustrated for three systems considered below.  In all three cases the 

source of energy is a generator of EMF=V to  and internal resistance Rs. ωcos

 

Case (i):  The generator driving a load resistance RL as shown in Fig. 1. 
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Figure 1.  Generator driving a load resistance RL. 

 

(a)  System response:  current i, 
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(c)  Power absorbed by the load pL, 
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(d)  Energy stored by the load eL, 
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The system is linear but not resonant.   

 

Case (ii)  The generator driving an RL, C circuit shown in Fig. 2 
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Figure 2.  Generator driving RL, C circuit. 

 

(a)  System responses:  current i, capacitor voltage vC, resistor voltage vR and load voltage vAB.  
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(b)  Power supplied by the source ps, 

( ) ( )
( )[ ]

( )
( )[ ]{ }

.1tanwith

,
1

cos
1

1cos

Re

2
1

2
1

2

0
2

2

0

0

CR
CRR

tCV
CRR

CRtVp

i
CjRR

CjReVivp

L

SLSL

L
s

LS

Lti
ABs

ωθ
ω

ϕωω
ω

ωθϕω

ω
ωω

=
++

+









++
+

−+=

=⋅







−+

−
==

 (6a) 

( )[ ]
( )[ ]

( ) (

( )[ ]

)

( )[ ]
( )[ ]{ }.2coscos

2
1

1
1

coscos
1

1

2

2
2

2

2
2

2
1

2
1

θϕωθ
ω

ωω

ϕωθϕω
ω

ωω

−++
++

+
=

=+−+
++

+
=

t
CRR

CRCV

tt
CRR

CRCVps

SL

L
o

SL

L
o

 (6b) 

The term ( )[ ]θϕωθ −++ t2coscos  varies in the course of a cycle between positive values, indicating 

energy flow into the system, and negative values indicating flow of energy into the source. 

(d)  Energy stored in the load eL, 
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It is apparent from the above that energy varying with time is stored in the system due to the presence 

of the capacitor, a circuit element capable of storing electric energy. 

The system thus is linear, capable of storing energy but is not a resonant system because it exchanges 

energy with the source. 

 

Case (iii)  The generator driving an RL, L, C circuit shown in Fig. 3. 
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Figure 3.  Generator driving RL, L, C circuit. 

 

(a)  System responses:  current i, capacitor voltage vc, inductor voltage vL and load voltage vAB. 

The current i, 
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with ( ) ( ).1tan SL RRCL +−= ωωϕ  

If one introduces the symbol LC12
0 =ω  the expression for i becomes 
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The capacitance voltage vC is 
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The inductance voltage VL is, by analogous procedure, 
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The load voltage vAB is, 
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(b)  Power supplied by the source, ps is 
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One observes that for the case of 01 =− CL ωω  both phase angles ϕ and θ are zero so that the 

expression for power ps delivered by the source is proportional to cos2ωt and is always positive, 

implying that no power is returned to the source.  The requirement that  can be 

reformulated in the form 22
01 ωω == LC . 

01 =− CL ωω

Because of the presence of capacitance C and inductance L the system is capable of storing energy.  It 

is thus apparent that it satisfies all three requirements (i), (ii), and (iii) characterizing a resonant system, 

and is therefore an example of such, resonating at frequency f0, 
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Some additional features of the R.L.C. circuit considered will be presented in paragraphs (c) and (d) 

below. 

(c)  Power pL0 dissipated by the load at resonance, with 0ωω =  is 
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which is equal to the power supplied by the source at resonance as evident from Eq. 9a. 

(d)  Energy  stored by the load at resonance, i.e. at 0Le 0ωω = , is 
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with i0 and vc0 designating current and capacitance voltage amplitudes respectively at  

ω = ω0. (12a) 

Substitution from Eq. 8b and 8c reduces the above relation to 

( ) ( )( )
t

RRC
CVt

RR
LVe

SLSL
L ω

ω
ω 2

2
0

2
02

2

2
0

0 sin
2
1cos

2
1

+
+

+
=  (12b) 

But L
C

=2
0

1
ω

, so that 

( ) ( ) ( )2
2

02
2

2
02

2

2
0

0 2
1sin

2
1cos

2
1

SLSLSL
L

RR
LVt

RR
LVt

RR
LVe

+
=

+
+

+
= ωω  (12c) 

It is apparent from the above result that in the RL, L, C resonant system considered the total energy 

stored at resonance does not vary with time.  This feature as observed in the special system discussed is 

an illustration of general property of all linear resonant systems, stated here without proof, of storing 

time independent total energy at resonance. 

2. Series resonant circuit 
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The case (iii) system described above and shown in Fig. 3 is a series resonant circuit, a system 

commonly employed as such, or as a convenient approximation of other resonant systems.  For these 

reasons some additional properties thereof will be described below. 

A feature of interest is the behaviour of the circuit at frequencies close to resonance.  In the discussion 

to follow we shall employ standard phasor quantities I and V instead of instantaneous circuit quantities 

i and v used earlier. 

The common loop current I is, from the diagram of Fig. 3, given by the relation 
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When the expression for the resonant (angular) frequency LC10 =ω  is introduced into the above 

equation the expression for the current I becomes 
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The final form for I obtained above will now be formulated in convenient dimensionless parameters.  

We shall also limit the frequencies considered to values close to resonant frequency 0ω .  It is useful to 

observe that the term C01 ω  is the magnitude of the reactance of the capacitance C at frequency 0ω .  

Furthermore the term 00 CLSLS XRRCRR  and is the ratio of lossy portion of the circuit 

impedance and a representative of reactive portions.  It should be borne in mind that for LC10 =ω

X

 

the magnitude of the capacitive reactance  is equal to the magnitude of the inductive reactance 

.  The reciprocal of the term 

0C

0LX ( ( ) 000 LLSCLSLS XRXRRCRR R += , 

( )LSCX 0 RR +  is called the quality factor Q of the circuit and will be shown below to be a measure 

of the relationship between power dissipated in the circuit and energy stored therein, and will also 

govern the frequency behaviour of the circuit in the vicinity of the resonance. 

( ) ( )+=+ ω

) ( )+=+ ω
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It should also be noted that for frequencies close to resonance it is convenient to approximate the value 

ω by ω0, except in the term ω-ω0. 

When the term Q and the approximation of ω to ω0 is introduced into Eq. 13b, the expression for the 

current I reduces to 

( )[ ]000

0
21 ωωω −+

=
jQX
VI

C
. (14a) 

The above relation may also be reformulated by stating that the loop impedance Z in the vicinity of 

resonance is  

( )[ 0021
0

]ωωω −+= jQXZ C . (14b) 

The equation for current I derived above exhibits several features characteristic of all resonant 

phenomena: 

(i)  At resonance the driving voltage V0 and the response I are in phase due to the disappearance of the 

imaginary term  

( )ωωωω 00 −j  and, 

(ii)  the driven current amplitude is maximum, Imax=
00 CXQV . 

The two observations can be considered to be the consequence of the fact that at resonance the loop 

impedance is pure resistance.  It should be mentioned that although in the circuit considered the 

response current amplitude is maximum at resonance, there are circuits where the current amplitude is 

minimum.  It is, however, in all cases in phase 

with the driving voltage V0. 

We shall next consider the off resonance behaviour of the circuit.  As the frequency moves away from 

the resonance the imaginary term 0000 2jj &  increases the magnitude of the 

denominator in Eq. 14a for the current I, reducing the amplitude thereof and introducing a phase shift 

between the phasors of the driving voltage V0 and the current I.  Interesting conditions are obtained 

when the magnitude of the imaginary term in the loop impedance reaches the value of the real value 

therein, i.e. when 

( ) ( ) ωωωωωωω −=−
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( ) Q12 00 =−± ωωω . (15a) 

At this frequency the magnitude of the impedance increases from its resonant value of QXC0 to 2  

QXC0, reducing the value of loop current amplitude to 21  of its resonant value.  The power 

dissipated in the circuit is ( ) 2IRR LS +  and the reduction of the current amplitude by the factor 21  

is accompanied by the reduction of the power dissipated to one-half of its value at resonance.  

Expressed in decibel units the level of power reduction is 3dB.  The frequency shift ω-ω0  from 

resonance to 3dB power reduction is, from Eq. 15a, Q02
ω1

± .  The range of frequencies ∆ω for which 

power absorbed (and dissipated) lies between maximum at resonance and 3dB power reduction is thus 

Q0 , (15b) ωω =∆

and is called the 3dB bandwidth of the circuit, and is often employed as a measure of frequency range 

of the resonant circuit effective loop impedance.  It follows from Eq. 14b that the loop impedance Z, 

approximated in the neighbourhood of resonance by expression 00210 jQXC  increases 

rapidly as the frequency moves away from the resonance with the reactive part dominating the 

magnitude.  The exact value of the reactive part, ( )ωω000 −CjX  is seen to approach large 

capacitive reactances for low frequencies, and large inductive for high frequencies.  As a consequence 

the ability of the circuit to absorb power at frequencies significantly removed from the resonance is 

strongly reduced. 

( )[ ]ωωω −+

ωω

An important aspect of the circuit performance is the phase between the driving voltage V0 and the 

driven current I(angle ϕ of Eq. 8a).  As was mentioned earlier, at resonance the two quantities are in 

phase.  As the frequency moves away from the resonance the loop impedance acquires reactive 

components affecting the phase relationships between input voltage and current.  At 3dB points, i.e. at 

Q00 2
ωωω ±=−

1  the phase is ±45°, the current leading the voltage at the lower edge of the band, 

where the reactive component of the input is capacitive, and the current lagging the voltage where the 

reactive component is inductive.  

The features of the resonant circuit mentioned above are diagrammatically represented in Fig. 4. 
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Figure 4.  Amplitude and phase relationships near resonance. 

Because the ability of the resonant circuit to absorb power is frequency-sensitive, it is commonly used 

as a device to select a desirable frequency from a manifold thereof.  In communications applications it 

is often employed as a frequency selective element of a tuner. 

It may be useful to consider in some detail the significance of the quality factor Q.  It governs two 

important properties of a resonant circuit:  the frequency selectivity as expressed in 3dB bandwidth 

Q0  and the value of impedance at resonance, QXRR CLS 0
.  It is important to note that 

the factor depends not only on the resistive element of the load, but also on the resistive element of the 

source.  Thus frequency selective properties of a resonant circuit do not depend solely on the loss 

mechanism of the load, but also on the loss mechanism of the source. 

ωω =∆ =+

Another important property of the Q factor is its effect on the capacitance and inductance voltages at 

resonance.  At resonance the 
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impedance of the capacitance and inductance are CjjXC 00 ω−=−  and CjLjjX L 000 ωω == .  The 

circuit current I0 at resonance is ( )SL RRV +0 .  Thus the reactance voltages are 

( ) QjVCj
RR

VV
SL

C 00
0

0 −=−
+

= ω , 

and, 

( ) QjVLj
RR

VV
SL

L 00
0

0 =
+

= ω . (16) 

The magnitudes of reactance voltages are thus Q times larger than the voltages that would have 

appeared across them, had they been driven by the source independently.  Because the reactive voltages 

are of opposite polarity the total voltage across the series combination of the inductance and 

capacitance is zero and the voltage appearing across the load is SLL RRRV +0  and depends only on 

the loss elements of the loop. 

( )

The quality factor also bears on the energy balance in the circuit at resonance.  The instantaneous 

energy stored in the inductance and capacitance are 2Li2  and 2cCυ 2

( )

 respectively.  At resonance the 

phasor of the current i is SL RRV +0  while the phasor of the capacitance voltage vc is 

( )[ ]LS RRCjV 00 .  The current i and voltage vc are thus 90° out of phase so that  +− ω

( )LS RRtVi += 00 cosω  

and, 

([ )]LSc RRCtVv += 000 sin ωω . (17) 

The total energy stored W0 is 
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the equation for W0 reduces 

( )LS RRVQW += 2
000 2

1ω  (18b) 

The following conclusions can be drawn from the last equation: 

(i)  At resonance the total energy stored in a series resonant circuit is independent of time. 

(ii)  20V  is the RMS value of the amplitude of the driving EMF.  The term 

( ) ( )LSLS RRRMSVRRV +=+ 2
0

2
02

1  is the power P0 dissipated in the total resistive portion of the 

circuit.  Eq. 18b can thus be expressed in the form 

0

00
P
WQ ω

= . (19) 

The result obtained above can be formulated in terms of the statement that the quality factor Q of a 

series resonant circuit is the ratio at resonance of the total energy stored multiplied by angular resonant 

frequency, and the total power dissipated in the circuit. 

The results (i) and (ii) listed above have been derived analytically for a series resonant circuit.  They 

apply, however, to all resonant circuits.  Also, expression for the 3dB bandwidth Q0  is 

exactly valid for series and parallel resonant circuits.  For other resonant configuration the relation is of 

the form Q0  where γ is a numerical factor commonly lying between one and two. 

ωω =∆

γωω =∆

The relationships involving Q were derived for steady state conditions.  They also occur in analysis of 

transient behaviour.  Equation of motion for a harmonically excited series resonant circuit is 

tjeVj
c
i

dt
diR

dt
idL ωω 02

2
=++ . (20) 

The general solution incorporating effects of initial condition is 

tjt eIeIi ωβ
21 += , (21) 

where teI β
1  is the solution of the homogeneous equation 
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which, on substitution for i teI β
1=  becomes 
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The solutions of this equation are 
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For the common case of low loss systems the term R/2L is smaller than ω0 and it is convenient to 

express β in the form 
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Substitution of Q for the term Lω0/R reduces the equation to the form 

QQ
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The transient solution i1 is thus 

[ ] τωω 200 111
t

eeIeIi tjtj −′−−′+ +=  (24) 
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It is apparent from Eq. 24 that the time constant 2τ for the linear transient is 00 22 ωω ∆=Q , where 

∆ω0 is the 3dB bandwidth of the steady state response.  In as much as the quadratic quantities such as 

energy and power are proportional to the squares of linear quantities, the decays thereof are determine 

by the term 

0
0

2
0

2
ω

ωω
∆

−−−
==












 t
Q

t
Q

t

eee  (25) 

The reciprocal of the 3dB bandwidth ∆ω0  is thus the time constant of the transient behaviour of stored 

energy and power in a series resonant circuit.  Similar relations also obtain for more complicated 

resonant systems. 

3.   Parallel resonant circuit 

A circuit dual to a series resonant circuit is a parallel resonant circuit shown in Fig. 5. 

+

v

-

IO

GS GL C L

 
Figure 5.  Parallel resonant circuit 

Results obtained for series resonant circuit can be adapted to describe properties of a parallel resonant 

circuit by carrying out the duality transformation switching the words series ↔ parallel, impedance ↔ 

admittance and voltage ↔ current.  Thus whereas in series resonant circuit the driving quantity was 

voltage and the responding quantity was current as common to all components of the circuit, in parallel 

resonant circuit the driver is current and responding quantity is the common voltage. 

Presented in Table 1 are dual relationships pertaining to the two circuits discussed. 
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Table 1 

Quantity Series resonant circuit Parallel resonant circuit 

impedance - admittance 
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ELECTROMAGNETIC CAVITY 
 



Page 19 of 31 

1. Electromagnetic cavity 

Electromagnetic cavity is a volume of space enclosed by electromagnetically impenetrable, usually 

metallic walls.  If the cavity is to interact with outside space, the cavity walls are breached by a small 

opening commonly called an iris through which energy can pass into or out of the cavity.  Examples of 

cavities are sections of transmission systems such as coaxial lines or waveguides terminated at both 

ends by elements impenetrable, or nearly so for electromagnetic modes of the corresponding 

transmission systems. 

A prototype of a transmission system cavity is a section of transmission line terminated at both ends by 

devices inhibiting totally or partially passage of electromagnetic energy through them.  The prototype 

may often serve as an equivalent circuit of wide range of cavities and will be analysed below. 

2. Transmission line cavity with single iris 

The system considered is a section of transmission line of characteristic impedance Z0 and phase 

velocity u, of length l.  One end of the section is terminated in a short circuit while the other end is 

connected to a source of frequency ω through identical transmission line.  An iris allowing passage of 

some electromagnetic energy into the cavity is inserted between the feed line and the cavity section.  

Electromagnetic properties of the iris are equivalent to a susceptance B.  The circuit representation of 

the system is shown in Fig. 1. 

jB

l

 
Figure 1.  Transmission line cavity. 

 

The parameter describing most of the circuit properties of the cavity is the input impedance Zin which, 

however, must be associate with a specific pair of terminals. 

A useful relationship in the discussion of the problem is the relation given below in Fig. 2 and proved 

in the Appendix. 
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θ θ

jB

θ2cot2 0YB =
θ22

021 tanZZZ =

 

Figure 2.  Inverter circuit. 

 

The equivalent circuit of the cavity as shown in Fig. 1 can be modified to the form shown in Fig. 3. 

θθ

l-d l-d
l

d

jB
M

M'
in

N

N'

θ2cot2 0YB =

 

Figure 3.  Equivalent circuit of transmission line cavity. 

 

The amended circuit identifies convenient terminals of driving point impedance Zin and allows one to 

employ standard transmission line circuit analysis, as will be carried out below. 

The driving point impedance Zin at terminals MM′ is related to the impedance Z at terminals NN′ by 

the relationship given in Equation 1 in Fig. 2, 

 
Zn

ZZin
1

2

2
0=  (2a) 

with n = cotθ  and B = θ2cot20Y . 
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But Z is the impedance of a short circuited section of length d and is djZ βtan0 , where β is the 

propagation constant uω .  Thus the driving point impedance Zin is 

 dn
ZjZin βtan

1
2
0−=

 (2b) 

We shall investigate the resonance behaviour of the circuit, i.e. when Zin = 0 or ∞.  The choice of the 

two extreme possibilities is suggested by the behaviour of conventional lossless series or parallel 

resonant circuits.  We shall start the analysis of the circuit behaviour in the frequency range close to 

where Zin = ∞, i.e. where ∞=dβcot  or, where 0tan =dβ .  This occurs whenever d is an integral 

multiple of half wavelength 2λ  i.e. where 2
λmd = .  We shall investigate the lowest longitudinal 

mode m = 1, i.e. when d = 2λ . 

We observe that in the vicinity of πβ =d , i.e. πω
=d

u
 the approximate power series expansion of 

dd ββ tan1cot =  is 

 

1cot

11
sin
coscot

0ωωπω
β

πωπββ
ββ

−
−=

−
−=

−

−
=

−
−

==

d
u

d
u

d
u

d

u
ddd

dd

&

&

 (3) 

with d
uπω =0 . 

The expression for Zin becomes 

 ( )
0

0
2
0

02
0

ωω
ω

πωω −
−=

−
−=

n
Zjdu

n
ZjZin &  (4) 

When one observes that for a lossless parallel resonant circuit the input impedance near resonance is 

0

0

0

1
2 ωω

ω
ω −

−
C

j  the expression for Zin derived in Eq. 4 can be considered to be the input impedance of 

equivalent circuit shown in Fig. 4. 
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Figure 4.  Lumped equivalent circuit of transmission line cavity near resonance. 

 

We note that input impedance of a lossy parallel resonant circuit is ( )
0

0210

11

ω
ωωω −+ j

Q
C

, describing the 

behaviour of circuit shown in Fig. 5. 

in C
QR

0ω
= C L

 

Figure 5.  Lossy parallel resonant circuit. 

 

Thus a good approximation of the impedance of a lossy transmission line cavity is, by analogy to the 

parallel resonant circuit the modification of the expression for Zin in Equation 4 

 
( )

0

02102
12

ω
ωωπ −+

= j
Q

in Z
n

Z

 (5) 

leading to the equivalent circuit shown in Fig. 6. 
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Figure 6.  Equivalent circuit of a lossy transmission line in the vicinity of resonance. 

 

In discussion to follow it will be necessary to consider frequencies substantially removed from 

resonance.  Under these circumstances one is reminded that the exact expression for cavity input 

impedance is given in Equation 2, π
ω
ωβ

02
0

2
0 cotcot

n
Zjd

n
Zjin −=−=Z . 

The input impedance of a resonant cavity at a frequency far removed from resonance is very nearly 

zero as viewed at terminals MM′, i.e. the cavity in these frequency ranges behaves as a short circuit.  It 

is convenient to describe the frequency response of the cavity in terms of the SWR produced on the 

input line.  The coordinates employed are shown in Fig. 3 and position of VSWR minimum will be 

designated Si. 

Si

20λ

40λ

0ω
ω

 
Figure 7.  Location of VSWR minimum in the vicinity of resonance for undercoupled and  

overcoupled cavities. 
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The behaviour of the voltage minimum position as the frequency is swept through resonance and is 

conveniently visualized by comparing it with the position of voltage minimum produced by a short 

circuit located at observation terminals MM′ of Fig. 3.  Plotted in Fig. 7 as a dotted line is the position 

of voltage minimum with reference to a point 2λ  away from the position of the short at MM′.  As the 

frequency increases wavelength becomes shorter and the minimum moves closer to the position of the 

short, the process indicated by the slope of the dotted line. 

When the short is replaced by the cavity, at frequencies sufficiently removed from resonance on the 

low side of the cavity impedance approximates zero as evident from Eq. 2 and the location of voltage 

minimum follows the dotted line of Fig. 7.  As the frequency approaches resonance the conditions 

change.  Cavity impedance below resonance is inductive as is apparent from equivalent circuit of Fig. 6 

and the distance Si of voltage minimum from terminals MM′ begins to drop faster than would be the 

case of short circuit termination.  The conditions change when the frequency approaches resonance 

because of the effect of resistive term R = QZ0 as evident from Fig. 7 and Fig. 6.  At resonance the 

impedance of the cavity is purely resistive and its value is ( )02
20 inZ

n
QZ =
π

. 

Expression 22nπ  will occur frequently is subsequent discussions and it will be convenient to 

introduce a symbol Qe for it, i.e. eQn =22π  called the external Q.  Thus ein QQZZ 0= . 

Depending on whether the resonant resistive impedance is smaller than, larger than, or equal to Z0 there 

will obtain three different conditions as listed below. 

(i) 00 ZQQZZ ein <= :  in this case voltage minimum will occur at the same location as voltage 

null produced by short circuit termination. 

(ii) 00 ZQQZZ ein >= :  voltage maximum will occur at the null location produced by short 

circuit termination. 

(iii) 00 ZQQZZ ein == :  the cavity is matched to the line, no standing wave pattern is present. 

The three cases considered above are designated undercoupled for 00 ZQQZ e < , overcoupled 

for 00 ZQQZ e > , and critically coupled for 00 ZQQZ e = . 

As the frequency is increased beyond resonance the input impedance acquires capacitive character.  For 

the undercoupled case the distance of the observed minimum, moves initially away from the reference 

terminals.  In high frequencies the input impedance begins to approximate short circuit and minimum 

approaches the location of selected minimum of the short-circuited termination as shown in Fig. 7. 
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The pattern of behaviour for overcoupled case is different in that at resonance, when input impedance 

Zin is real, and is larger than Z0 at reference terminals the voltage is maximum and minimum occurs 

4λ  away.  When the behaviour of voltage minima is traced in this case as the frequency is increased 

from its initial off resonance value the minimum moves towards the reference point but as the 

frequency approaches resonance it does not reverse its motion as was the case for undercoupled cavity, 

but stops at 4λ  distance from reference terminals, which become the location of voltage maximum as 

mentioned earlier.  As the frequency is increased beyond resonance the minimum continues to move 

toward the location of short circuit minimum, but not the one from which it started but one 2λ  closer 

to reference terminals, as shown in Fig. 7. 

External Qe is thus seen as a parameter which quantifies the interaction of the inside of the cavity with 

external environment. 

3. Loaded Transmission Line Cavity 

In many instances the cavity has two input-output portals.  The input portal connects the driver to the 

cavity while the output portal, usually an iris at the original short circuit wall of the cavity connects the 

inside of the cavity to the load which absorbs a portion of power supplied by the source, modified by 

interposition of the cavity.  A common application of this nature is the use of the cavity as a bandpass 

filter. 

When the short circuit wall of the cavity is replaced by an iris the equivalent circuit of the cavity as 

shown in Fig. 1 is modified to the configuration shown in Fig. 8. 

jB jB'

l

 

Figure 8.  Loaded transmission line cavity. 

 

The effect of the susceptance B′ can be conveniently evaluated by employing the impedance 

transformation of Equation 1 as shown in Fig. 2 and shown in Fig. 9. 
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Figure 9.  Application of inverter circuits to a transmission line cavity. 

 

The resultant equivalent circuit of the loaded cavity is given in Fig. 10. 
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Figure 10.  Lumped equivalent circuit of loaded transmission line cavity. 

 

Analysis of the circuit of Fig. 9 is simplified if one expresses the terminal load 2
0 nZZ ′=′  in the 

form 

 δβ ′=′ tan0jZZ . (8) 

The cavity input impedance Zin is then given by 

 
( )

δββ
δββ

δβ

′+′
′′−

′
−=

′+′′
=

tantan
tantan1

tan
1

2
0

2
0

dj
d

n
Zj

djn
ZZin

. (9a) 

Inasmuch as tanβd′ in the vicinity of resonance is a small number and Z ′  is usually a small 

perturbation of the short circuit termination the expression for Zin can be approximately reduced to 
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 ( )
δββ ′+′

−
′

=
tantan

1
2
0

d
j

n
ZZin  (9b) 

Power series expansion of tangent function u in the vicinity of resonance reduces the expression for 

Zin, in a manner analogous to that employed to develop Equation 4, to the form 

 ( )
πω

ωωπ 212

11

20

020

n
jn

ZZ j
in

′
+

−






′
= − . (10a) 

Internal losses in the cavity can be accounted for by the addition of the term Qi1  to the denominator.  

The terms of the form n2
2
π  have been designated external Q′e, Qe.  The final expression for Zin then 

becomes 

 ( )
ei

e
in

QQ
jQ

ZZ

′
++

−
=

112

11

0

0
0

ω
ωω

 (10b) 

An equivalent circuit appropriate for the expression for Zin as developed above is given in Fig. 11. 

M

M'
0ZQR i= 0ZQR e′=′

N

N'
 

Figure 11.  Reduced lumped equivalent circuit of a loaded transmission line cavity. 

 

The reciprocal of the term 
ei QQ

11 +  in Equation 10b is commonly designated the loaded Q of the cavity 

and incorporates the effect of external loading on the performance of the cavity. 

4.  Frequency response of a resonant cavity. 

It is often important to know the frequency response of a cavity.  It may be defined as the ratio of 

power absorbed by the cavity at frequency ω, usually lying close to the resonant frequency ω0, the 

power absorbed at resonance, the maximum power.  A common measure of the effect is the spread of 

frequencies δω in which the ratio is above 21 , the 3 dB bandwidth. 
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Power absorbed at frequency ω, P(ω) is equal to the incident power minus reflected power, so that with 

ρ(ω) the reflection coefficient at frequency ω, 

 ( ) ( ) 



 −= 21 ωρω iPP , (11) 

with Pi the incident power. 

The 3 dB bandwidth is therefore given by the relation 

 
( )

( )
.

2
1

1
21

2
0

0
=

−

±−

ωρ

ωδωρ
 (12) 

The reflection coefficient ρ(ω) is 

 ( ) ( )
( ) 0

0
ZZ
ZZ

in

in
+
−

=
ω
ω

ωρ  (13a) 

Substitution from Equation 10b yields 

 ( )
( )

( ) ′
++

−−
=

−

−

QQ

QQ

j

j

e

e

11

11

0

0

0

0

2

2

ω
ωω
ω
ωω

ωρ  (13b) 

where Q is the “loaded Q”, the reciprocal of 
ei QQ ′+ 11 . 

When the above expressions are introduced into Equation 12, it reduces to  
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The value of 0ωδω  obtained from the above is, 

 
ieee QQQQQ

11111

0
+

′
+=+=

ω
δω  (15) 

It is apparent from the above equation for 0ωδω  that the power delivered to external source and load 

impedances as governed by external Qs has the same effect on the frequency response as the power 

delivered to internal loss mechanism. 
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Appendix 

Transmission line inverter circuit. 

Consider a transmission line network shown in the figure below: 

Z0 Z0V2V1 jB
++

- -

θ θ

I1 I2

 

 

 

The relationship between the column vectors  and  is given by the product of three 

component network matrices (θ), (jB) and (θ) so that,  
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The matrices are: 
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When the matrix multiplication is executed the relationship between the two sets of circuit variables 

becomes, 
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For the case of θ2cot2 0YB = , the above equation reduces to 
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 θtan201 IjZV = , 

 θcot201 VjYI = . (20a) 

The resultant relation between the impedances 112 IVZ =  and 222 IVZ =  follows, 

 . (20b) θ22
021 tanZZZ =

Q.E.D. 

 


