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1. Introduction, general resonance

A linear, single input resonant system is an assembly of objects exhibiting all of the following

properties:

(i) Power input by external source at a frequency produces a steady state response at the same

frequency.
(i) Some of the energy supplied by the source is stored in the system.

(ii1)) There exists at least one frequency, such that no portion of power absorbed by the system at this

frequency is returned to the source.

The definition given above will be illustrated for three systems considered below. In all three cases the

source of energy is a generator of EMF=V, cosawt and internal resistance R,.

Case (i): The generator driving a load resistance R; as shown in Fig. 1.

R i
A
+
V, 2 R,
- B

Figure 1. Generator driving a load resistance R; .

(a) System response: current i,

i= d cosat. (1)
RS +RL

(b) Power supplied by the source pq,

VIR,

2
CoS” wt. (2)
R, +R)

Dy =V pl = (
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(c) Power absorbed by the load p;,

2
Vo R 2

pr =vii= cos” wt. 3)
(R, +Rs)

(d) Energy stored by the load ¢,

T T
€L=I(PS—PL)df=I0'df=0- 4)

The system is linear but not resonant.

Case (ii) The generator driving an R;, C circuit shown in Fig. 2

Figure 2. Generator driving R;, C circuit.

a) System responses: current i, capacitor voltage v, resistor voltage vp and load voltage v 4.
y P p geve gC VR ¢ V4B

. Voe! ™ I )
| Ry +Rs = jjaC)| ¢ 2

{1+[(RL +RS)a)C]2F

with tang =1/(R; + Rg )oC.

i= Voo cos(wrt + ). (5b)

{1+ [(R; + Rg )C é
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ve = Re{Voeja)t(_jj 1 }: Vo cos(a)t+(p—90°) 50)
wC [RS +RL—j/a)C] {1+[(RL+RS)a)C]2}%

(b) Power supplied by the source pq,

- R, —j/oC
ps=vABi:Re{Voe’”t Lo ]i

R +R, — jloC

2 3
. =V, cos(et+g— 0){ 1+(R,Co) : } V,C cos(wt + ) . (6a)
1R, +RJoCT | (R, + R JoCT ]
withtand =1/R, wC.
1
2P
ps= Voza)C [1 +(R o) T cos(wt + @ — 0)cos(wt + ¢) =
1+[(R, + Rg )oCT (6b)

o [1+(RLa)c)2F 1
=V,“wC L+ [y + R )a;C]Z E{cos& +cos[2(wt + ) - 0]}

The term cosé + cos[2(wt + @) — 6] varies in the course of a cycle between positive values, indicating

energy flow into the system, and negative values indicating flow of energy into the source.

(d) Energy stored in the load e,

e/ (= j/C) }}2 _

1 2 _ 1
e; =-Cv; =—CiRe| V,
L=27%e ™ { {ORS—i-RL—j/a)C

(7)
1

1+[(Rg + R, JoCF

:%CVO2 cos? (a)t+¢)—90°)

It is apparent from the above that energy varying with time is stored in the system due to the presence

of the capacitor, a circuit element capable of storing electric energy.

The system thus is linear, capable of storing energy but is not a resonant system because it exchanges

energy with the source.

Case (iii) The generator driving an R;, L, C circuit shown in Fig. 3.
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Figure 3. Generator driving R;, L, C circuit.

(a) System responses: current 7, capacitor voltage v,., inductor voltage v; and load voltage v 4.

The current i,

jot Jlar-g)
i=R, Yoe ] =R, Voe 1 (8a)
R; +R +j(a)L—j 2|2
LTos wC [(RL +RS)2+(0)L—1)
oC
with tang = (wL —1/oC)/(R; + Rg).
If one introduces the symbol a)(% =1/LC the expression for i becomes
Voej(wt+¢)a)0C
i=R, - |=
2 2
llowc(®y + R )P + (/g -y 0 f (b
Voa)oc

= ; cos(wt + ).
{looC(R, + R )P + (/g 9 /@)

The capacitance voltage v is
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Voej(wprm(wo /0))(_ ])

vC = Re > 2 L
llonC(R, + R F + (/0 -0, 0) | 50
v, (@, /a))cos(a)t +¢—90° )
{[a)OC(RL + Ry )]2 + (a)/wo - a)o/a))2 F
The inductance voltage V; is, by analogous procedure,
v, = Vol )cos(a)t+(p+90 ) ~ (8d)
{[woc (R, +Rg)F +(o/wy - ag /o) F
The load voltage v 43 is,
2 2
Vi :VO{ (RLooC)* + (/g - @y /) } cos(wr + p+ 0)
(Rp, + Rg JooC + (/g — g |0} (8¢)

with tan 6 = (a)L—1 RL).
wC

(b) Power supplied by the source, p; is

[(RLWOC)Z + (o] wg —(00/0))2% 1

cos(a)t +o+ G)COS(a)t + q)) (9a)
{[(RL + Rs )ooCT +(w/og -0y /o) F

. 2
Ps =Vv4Bi =V

One observes that for the case of wL—1/wC =0 both phase angles ¢ and @ are zero so that the
expression for power p, delivered by the source is proportional to cos?2erf and is always positive,

implying that no power is returned to the source. The requirement that @wL—1/@C =0 can be

reformulated in the form @? =1/LC = o .

Because of the presence of capacitance C and inductance L the system is capable of storing energy. It
is thus apparent that it satisfies all three requirements (i), (i1), and (ii1) characterizing a resonant system,

and 1s therefore an example of such, resonating at frequency f;,

%
fO =0)0/27I=(LIC) /272'. (10)
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Some additional features of the R.L.C. circuit considered will be presented in paragraphs (c) and (d)

below.

(c) Power py dissipated by the load at resonance, with @ = @ 1s

PLy =RLi2 =V02(a)OC)2 Ry 2cos2 wt, (11)
[00C(RL +Rs )]

which is equal to the power supplied by the source at resonance as evident from Eq. 9a.

(d) Energy e Lo stored by the load at resonance, 1.e. at @ = @y, is
1o 1.2
erg=—Lig +—Cv7,
L0 2 0 2 c0
with iy and v, designating current and capacitance voltage amplitudes respectively at

w = . (12a)

Substitution from Eq. 8b and 8c reduces the above relation to

2 2
LV, CV, .
ero = l—ozcos2 wt +l 0 2 sin’ ot (12b)
2 (R, +Rg) 2 (Cag (R, +Rs)
But 5= L, so that
Ca)o
2 2 2
LV, LV ) LV,
erp =20 cos? w0 _in? =1 L0 (12¢)
2 (R, +Rg) 2 (R, +Rg) 2 (R, +Rs)

It is apparent from the above result that in the R;, L, C resonant system considered the total energy

stored at resonance does not vary with time. This feature as observed in the special system discussed is
an illustration of general property of all linear resonant systems, stated here without proof, of storing

time independent total energy at resonance.

2. Series resonant circuit
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The case (ii1) system described above and shown in Fig. 3 is a series resonant circuit, a system

commonly employed as such, or as a convenient approximation of other resonant systems. For these

reasons some additional properties thereof will be described below.

A feature of interest is the behaviour of the circuit at frequencies close to resonance. In the discussion
to follow we shall employ standard phasor quantities I and V instead of instantaneous circuit quantities

1 and v used earlier.
The common loop current I is, from the diagram of Fig. 3, given by the relation

V
"~ [Rs 2 R Jlol—ToC) 132

When the expression for the resonant (angular) frequency @ = 1/ v LC 1is introduced into the above

equation the expression for the current I becomes

_ VowoC _
(Rs + Ry, JargC + j(w/ @y — wy | @)
= Voot = 13b
_(RS +RL)a)0C+j(a)2—a)g)/a)a)o - (130)
= Voa)oc .
(Rg +RL)w0C+j(w_w0J(w+w0]
(00 w

The final form for I obtained above will now be formulated in convenient dimensionless parameters.

We shall also limit the frequencies considered to values close to resonant frequency @ . It is useful to
observe that the term 1/, C is the magnitude of the reactance of the capacitance C at frequency @y .

Furthermore the term (Rg + R; JoyC = (Rg + R} )/ X¢, and is the ratio of lossy portion of the circuit

impedance and a representative of reactive portions. It should be borne in mind that for o = l/ VLC

the magnitude of the capacitive reactance X Co is equal to the magnitude of the inductive reactance

X; The reciprocal of the term (RS+RL)a)0C=(RS+RL)/XCO=(RS+RL)/XLO,

0
Xc, / (Rg + Ry ) is called the quality factor Q of the circuit and will be shown below to be a measure

of the relationship between power dissipated in the circuit and energy stored therein, and will also

govern the frequency behaviour of the circuit in the vicinity of the resonance.
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It should also be noted that for frequencies close to resonance it is convenient to approximate the value

@ by @y, except in the term @

When the term Q and the approximation of @ to @y is introduced into Eq. 13b, the expression for the

current I reduces to

I= Yo .
Xcoll/0+ j2(0-wg)/ay]

(14a)

The above relation may also be reformulated by stating that the loop impedance Z in the vicinity of

resonance is
Z=Xc, [0+ j2(w-wy)/mg]. (14b)

The equation for current I derived above exhibits several features characteristic of all resonant

phenomena:

(1) At resonance the driving voltage V) and the response / are in phase due to the disappearance of the

imaginary term
H@] g -y | @) and,
(i) the driven current amplitude is maximum, Z,,,=VoQ/X ¢, -

The two observations can be considered to be the consequence of the fact that at resonance the loop
impedance is pure resistance. It should be mentioned that although in the circuit considered the
response current amplitude is maximum at resonance, there are circuits where the current amplitude is

minimum. It is, however, in all cases in phase

with the driving voltage V).

We shall next consider the off resonance behaviour of the circuit. As the frequency moves away from
the resonance the imaginary term j(w/wy — wy/@)= j2(@ - @y)/@, increases the magnitude of the
denominator in Eq. 14a for the current /, reducing the amplitude thereof and introducing a phase shift
between the phasors of the driving voltage V) and the current /. Interesting conditions are obtained

when the magnitude of the imaginary term in the loop impedance reaches the value of the real value

therein, i.e. when
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+2(w - )/wy =1/0. (15a)
At this frequency the magnitude of the impedance increases from its resonant value of QX to V2

OXcy, reducing the value of loop current amplitude to 1/ V2 of its resonant value. The power

dissipated in the circuit is (Rg + R; )|I |2 and the reduction of the current amplitude by the factor 1/ V2

is accompanied by the reduction of the power dissipated to one-half of its value at resonance.

Expressed in decibel units the level of power reduction is 3dB. The frequency shift o-@, from
resonance to 3dB power reduction is, from Eq. 15a, + %a)o /O . The range of frequencies Aw for which

power absorbed (and dissipated) lies between maximum at resonance and 3dB power reduction is thus

Aw=wy/0, (15b)

and is called the 3dB bandwidth of the circuit, and is often employed as a measure of frequency range
of the resonant circuit effective loop impedance. It follows from Eq. 14b that the loop impedance Z,

approximated in the neighbourhood of resonance by expression X, [1/0 +2j(w - @)/ @] increases

rapidly as the frequency moves away from the resonance with the reactive part dominating the

magnitude. The exact value of the reactive part, jXc, (a)/ ) — g/ ®) is seen to approach large

capacitive reactances for low frequencies, and large inductive for high frequencies. As a consequence
the ability of the circuit to absorb power at frequencies significantly removed from the resonance is

strongly reduced.

An important aspect of the circuit performance is the phase between the driving voltage V) and the

driven current /(angle ¢ of Eq. 8a). As was mentioned earlier, at resonance the two quantities are in
phase. As the frequency moves away from the resonance the loop impedance acquires reactive

components affecting the phase relationships between input voltage and current. At 3dB points, i.e. at

-y = i%a)o /O the phase is £45°, the current leading the voltage at the lower edge of the band,

where the reactive component of the input is capacitive, and the current lagging the voltage where the

reactive component is inductive.

The features of the resonant circuit mentioned above are diagrammatically represented in Fig. 4.
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-45° |—

Figure 4. Amplitude and phase relationships near resonance.

Because the ability of the resonant circuit to absorb power is frequency-sensitive, it is commonly used
as a device to select a desirable frequency from a manifold thereof. In communications applications it

is often employed as a frequency selective element of a tuner.

It may be useful to consider in some detail the significance of the quality factor Q. It governs two
important properties of a resonant circuit: the frequency selectivity as expressed in 3dB bandwidth

Aw =m0 and the value of impedance at resonance, Rg + R = X, C, / Q. Itis important to note that

the factor depends not only on the resistive element of the load, but also on the resistive element of the
source. Thus frequency selective properties of a resonant circuit do not depend solely on the loss

mechanism of the load, but also on the loss mechanism of the source.

Another important property of the O factor is its effect on the capacitance and inductance voltages at

resonance. At resonance the
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impedance of the capacitance and inductance are — j.X Co="J JwoC and jX Ly = JjoogL = j/wgC. The

circuit current ;) at resonance is ¥ /(R; + Rg). Thus the reactance voltages are

Vo . .
V = |- C = - V 5
Co RL+RS( Jjl@oC)=—jV,0
and,
Vo /. .
Viy=——"— L)= V0. 16
Lo Ry +Rs (jooL)= j¥o0 (16)

The magnitudes of reactance voltages are thus Q times larger than the voltages that would have
appeared across them, had they been driven by the source independently. Because the reactive voltages
are of opposite polarity the total voltage across the series combination of the inductance and

capacitance is zero and the voltage appearing across the load is VyR; / (RL + RS) and depends only on

the loss elements of the loop.

The quality factor also bears on the energy balance in the circuit at resonance. The instantaneous
energy stored in the inductance and capacitance are Li 2 / 2 and C UCZ / 2 respectively. At resonance the
phasor of the current i is V,/(R; +Rg) while the phasor of the capacitance voltage v, is

— jVo/l@oC(Rg + Ry )]. The current i and voltage v, are thus 90° out of phase so that

i =Vycosamgt/(Rg + Ry)

and,

v = Vysinagt/[@oC(Rg + Ry ). (17)
The total energy stored W) is

Wy = %LVO2 cos? a)t/(RS +RL)2 +%LVO2 sin’ a)t/[a)OC(RS + RL)]2 : (18a)

But, because Ly =1/woC and

Lay/(Rs +RL)=(a)(1)C]/(RS +R)=0,
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the equation for W reduces

Wowo = %Q V02/(RS +Rp) (18b)

The following conclusions can be drawn from the last equation:

(1) Atresonance the total energy stored in a series resonant circuit is independent of time.

(i1) VO/ J2 is the RMS value of the amplitude of the driving EMF. The term
%VO2 / (RS +RL)= V02 RMS/ (RS +RL) is the power P dissipated in the total resistive portion of the

circuit. Eq. 18b can thus be expressed in the form

_ oW

QPO

(19)

The result obtained above can be formulated in terms of the statement that the quality factor Q of a
series resonant circuit is the ratio at resonance of the total energy stored multiplied by angular resonant

frequency, and the total power dissipated in the circuit.

The results (i) and (ii) listed above have been derived analytically for a series resonant circuit. They

apply, however, to all resonant circuits. Also, expression for the 3dB bandwidth Aw =w/Q is

exactly valid for series and parallel resonant circuits. For other resonant configuration the relation is of

the form Aw = yw,/Q where yis a numerical factor commonly lying between one and two.

The relationships involving Q were derived for steady state conditions. They also occur in analysis of

transient behaviour. Equation of motion for a harmonically excited series resonant circuit is

2. o .
Lﬂ+Rﬁ+i=ja>Voe/“’f. (20)
dt? dt c

The general solution incorporating effects of initial condition is
i=leP + Lel™, 1)

where [ leﬁt is the solution of the homogeneous equation
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2. . .
PRI, (22a)
dt? dt c

which, on substitution for i =/ 1eﬂt becomes

Lp? +R,B+%=O (22b)
or,
ﬂ2+,b’%+a)§ =0. (22¢)

The solutions of this equation are

2
pe-Ls %j o (23a)

For the common case of low loss systems the term R/2L is smaller than @, and it is convenient to

express fin the form

2
R R
=+jwy.|1- - @ . 23b
ﬂ J 0 (2140)0] 2La)0 0 ( )

Substitution of Q for the term Lay/R reduces the equation to the form

2
B == jm, 1—[—] ~“0 (23¢)
The transient solution i; is thus

. r . 1 _L
il= [Ifef“’of T ]e 2r (24)

2
1
where o) = wpn./1-| — | and 1 =0/w .
0 =@ (2Q) Q/wy
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It is apparent from Eq. 24 that the time constant 2t for the linear transient is 2Q/my =2/Aw, , where

Awy 1s the 3dB bandwidth of the steady state response. In as much as the quadratic quantities such as

energy and power are proportional to the squares of linear quantities, the decays thereof are determine

by the term
R
e 0| =¢ 2 =¢ 2 (25)

The reciprocal of the 3dB bandwidth Aw, is thus the time constant of the transient behaviour of stored

energy and power in a series resonant circuit. Similar relations also obtain for more complicated

resonant systems.
3. Parallel resonant circuit

A circuit dual to a series resonant circuit is a parallel resonant circuit shown in Fig. 5.

Figure 5. Parallel resonant circuit

Results obtained for series resonant circuit can be adapted to describe properties of a parallel resonant
circuit by carrying out the duality transformation switching the words series <> parallel, impedance <>
admittance and voltage <> current. Thus whereas in series resonant circuit the driving quantity was
voltage and the responding quantity was current as common to all components of the circuit, in parallel

resonant circuit the driver is current and responding quantity is the common voltage.

Presented in Table 1 are dual relationships pertaining to the two circuits discussed.
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Quantity

Series resonant circuit

Parallel resonant circuit

impedance - admittance

Z=RS +RL +](G)L—Lj
@

Y:GS +GL +](G)C—L)
oL

impedance - admittance

near resonance

+2 M}

1t
a)OC Q / C!)O

Y = a)oc[i+ (@ =) _”0)}
Q @

impedance - admittance at | Zy = Lwy/Q=Rg+ Ry =Zmin | Yo =Cwy/0 =Gg+ G =Ymin
resonance
Yo =0/ Ly = Yinax Zy=0/Cwg = Znax

quality factor Q Loy Cowg 0

RS + RL GS + GL
resonant frequency f o= 1 fo = 1

0" 2zJLC 0" 2zJLC
3dB bandwidth Afo Afo = fo/Q Afo = fo/Q
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ELECTROMAGNETIC CAVITY
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1. Electromagnetic cavity

Electromagnetic cavity is a volume of space enclosed by electromagnetically impenetrable, usually
metallic walls. If the cavity is to interact with outside space, the cavity walls are breached by a small
opening commonly called an iris through which energy can pass into or out of the cavity. Examples of
cavities are sections of transmission systems such as coaxial lines or waveguides terminated at both
ends by elements impenetrable, or nearly so for electromagnetic modes of the corresponding

transmission systems.

A prototype of a transmission system cavity is a section of transmission line terminated at both ends by
devices inhibiting totally or partially passage of electromagnetic energy through them. The prototype

may often serve as an equivalent circuit of wide range of cavities and will be analysed below.
2. Transmission line cavity with single iris

The system considered is a section of transmission line of characteristic impedance Z, and phase

velocity u, of length /. One end of the section is terminated in a short circuit while the other end is
connected to a source of frequency o through identical transmission line. An iris allowing passage of
some electromagnetic energy into the cavity is inserted between the feed line and the cavity section.
Electromagnetic properties of the iris are equivalent to a susceptance B. The circuit representation of

the system is shown in Fig. 1.

le= 14 =
i

|
P O

[ ¢ 1
fo Z—~= ||IB  Z

F "
—— o

Figure 1. Transmission line cavity.

The parameter describing most of the circuit properties of the cavity is the input impedance Z;,, which,

however, must be associate with a specific pair of terminals.

A useful relationship in the discussion of the problem is the relation given below in Fig. 2 and proved

in the Appendix.
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G—Hea!é_g = B=2Y()C(;t2672
1 | i Z1Zy =Zjtan” 6
—

o—

Figure 2. Inverter circuit.

The equivalent circuit of the cavity as shown in Fig. 1 can be modified to the form shown in Fig. 3.

l T T_,— S——
| | | B =2Yycot260

Figure 3. Equivalent circuit of transmission line cavity.

The amended circuit identifies convenient terminals of driving point impedance Z;, and allows one to

employ standard transmission line circuit analysis, as will be carried out below.

The driving point impedance Z;, at terminals MM is related to the impedance Z at terminals NN’ by

the relationship given in Equation 1 in Fig. 2,
(2a)

with n = coté and B = Yj2cot26 .
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But Z is the impedance of a short circuited section of length d and is jZjtan fd , where S is the

propagation constant @/u . Thus the driving point impedance Z;,, is

Zy 1
" n2 tan,Bd (2b)

We shall investigate the resonance behaviour of the circuit, i.e. when Z;,, = 0 or co. The choice of the
two extreme possibilities is suggested by the behaviour of conventional lossless series or parallel
resonant circuits. We shall start the analysis of the circuit behaviour in the frequency range close to

where Z;, = o, i.e. where cot fd = or, where tan id =0. This occurs whenever d is an integral
multiple of half wavelength 1/2 i.e. where d = m% We shall investigate the lowest longitudinal

mode m=1,i.e. whend = 1/2.

We observe that in the vicinity of fd =z, i.e. —d = the approximate power series expansion of
u

cot fd =1/tan Bd is
_cospd . -1 -1
_sin,b’d_ﬂd—ﬂ_ﬂ_ﬂ_
! (3)

cot fpd = — % % 1

a)—ﬁ% — @

cot pd

. _ o u
with ) =7 %l] .
The expression for Z;, becomes

Z d Z
Zin=—j=% wd) __ — )
n® W= m*- @ =@

When one observes that for a lossless parallel resonant circuit the input impedance near resonance is

S D0 e expression for Z;, derived in Eq. 4 can be considered to be the input impedance of
2 0yC o -

equivalent circuit shown in Fig. 4.
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] N"th
Z 5 —=3)
l ZM'%'

o—1

00 O”(ﬁ(l)

(Lf

C

Figure 4. Lumped equivalent circuit of transmission line cavity near resonance.

1

0oC 1, 20-ay)
0 20

We note that input impedance of a lossy parallel resonant circuit is , describing the

behaviour of circuit shown in Fig. 5.

o
)

n

0—

0~ 9904750
—

o L
]

Figure 5. Lossy parallel resonant circuit.

Thus a good approximation of the impedance of a lossy transmission line cavity is, by analogy to the

parallel resonant circuit the modification of the expression for Z;,, in Equation 4

1 207 %)
e o 5)

leading to the equivalent circuit shown in Fig. 6.
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=)
;| —

1 Hg oL
¢ |

Figure 6. Equivalent circuit of a lossy transmission line in the vicinity of resonance.

In discussion to follow it will be necessary to consider frequencies substantially removed from

resonance. Under these circumstances one is reminded that the exact expression for cavity input

impedance is given in Equation 2, Z;, =—j Z—gcot pd=—j Z—gcotﬁﬂ .

n n w0
The input impedance of a resonant cavity at a frequency far removed from resonance is very nearly
zero as viewed at terminals MM, i.e. the cavity in these frequency ranges behaves as a short circuit. It
is convenient to describe the frequency response of the cavity in terms of the SWR produced on the
input line. The coordinates employed are shown in Fig. 3 and position of VSWR minimum will be

designated S;.

> W

A/2 .

Jolt +

| S ()

@

Figure 7. Location of VSWR minimum in the vicinity of resonance for undercoupled and
overcoupled cavities.
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The behaviour of the voltage minimum position as the frequency is swept through resonance and is

conveniently visualized by comparing it with the position of voltage minimum produced by a short
circuit located at observation terminals MM’ of Fig. 3. Plotted in Fig. 7 as a dotted line is the position
of voltage minimum with reference to a point 4/2 away from the position of the short at MM'. As the
frequency increases wavelength becomes shorter and the minimum moves closer to the position of the

short, the process indicated by the slope of the dotted line.

When the short is replaced by the cavity, at frequencies sufficiently removed from resonance on the
low side of the cavity impedance approximates zero as evident from Eq. 2 and the location of voltage
minimum follows the dotted line of Fig. 7. As the frequency approaches resonance the conditions
change. Cavity impedance below resonance is inductive as is apparent from equivalent circuit of Fig. 6

and the distance S; of voltage minimum from terminals MM’ begins to drop faster than would be the

case of short circuit termination. The conditions change when the frequency approaches resonance

because of the effect of resistive term R = (QZ as evident from Fig. 7 and Fig. 6. At resonance the

impedance of the cavity is purely resistive and its value is ZOQL2 =Zi, (O) .
m

Expression 7zn2/2 will occur frequently is subsequent discussions and it will be convenient to
introduce a symbol Q, for it, i.e. m? / 2=Q, called the external Q. Thus Z;, =Z,0/0, .

Depending on whether the resonant resistive impedance is smaller than, larger than, or equal to Z, there

will obtain three different conditions as listed below.

(1) Zin=200/0,<Zy: in this case voltage minimum will occur at the same location as voltage

null produced by short circuit termination.
() Z,=200/0,>Zy: voltage maximum will occur at the null location produced by short

circuit termination.

(i) Z;,=Zy0/0,=Z: the cavity is matched to the line, no standing wave pattern is present.

The three cases considered above are designated undercoupled for Z,Q/0, < Z, overcoupled

for Zy0/Q, > Z, and critically coupled for Z,0/Q, = Z,.

As the frequency is increased beyond resonance the input impedance acquires capacitive character. For
the undercoupled case the distance of the observed minimum, moves initially away from the reference
terminals. In high frequencies the input impedance begins to approximate short circuit and minimum

approaches the location of selected minimum of the short-circuited termination as shown in Fig. 7.
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The pattern of behaviour for overcoupled case is different in that at resonance, when input impedance

Z;, 1s real, and is larger than Z, at reference terminals the voltage is maximum and minimum occurs

A/4 away. When the behaviour of voltage minima is traced in this case as the frequency is increased
from its initial off resonance value the minimum moves towards the reference point but as the
frequency approaches resonance it does not reverse its motion as was the case for undercoupled cavity,
but stops at 1/4 distance from reference terminals, which become the location of voltage maximum as
mentioned earlier. As the frequency is increased beyond resonance the minimum continues to move
toward the location of short circuit minimum, but not the one from which it started but one /2 closer

to reference terminals, as shown in Fig. 7.

External Q, is thus seen as a parameter which quantifies the interaction of the inside of the cavity with

external environment.
3. Loaded Transmission Line Cavity

In many instances the cavity has two input-output portals. The input portal connects the driver to the
cavity while the output portal, usually an iris at the original short circuit wall of the cavity connects the
inside of the cavity to the load which absorbs a portion of power supplied by the source, modified by
interposition of the cavity. A common application of this nature is the use of the cavity as a bandpass

filter.

When the short circuit wall of the cavity is replaced by an iris the equivalent circuit of the cavity as

shown in Fig. 1 is modified to the configuration shown in Fig. 8.

- ‘ ’

d
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Zo iB Z 5 iB 7
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Figure 8. Loaded transmission line cavity.

The effect of the susceptance B’ can be conveniently evaluated by employing the impedance

transformation of Equation 1 as shown in Fig. 2 and shown in Fig. 9.
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Figure 9. Application of inverter circuits to a transmission line cavity.

The resultant equivalent circuit of the loaded cavity is given in Fig. 10.

"Myl ¢ 1 LNale ]
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Figure 10. Lumped equivalent circuit of loaded transmission line cavity.

Analysis of the circuit of Fig. 9 is simplified if one expresses the terminal load Z'=Z / n'? in the

form
Z' =jZytan o’ ®)
The cavity input impedance Z;,, is then given by

, _Z 1

a2 jtan p(d'+5)

_ . Zy 1—tan fd'tan 56’ '
n'2 jtan fd'+tan S5’

(9a)

Inasmuch as tanfd’ in the vicinity of resonance is a small number and Z' is usually a small

perturbation of the short circuit termination the expression for Z;, can be approximately reduced to
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Zy 1
Zi =—2(= ) 9b
" n'z( ]}tanﬂd'+tanﬂ5' ©b)

Power series expansion of tangent function u in the vicinity of resonance reduces the expression for

Z;,, in a manner analogous to that employed to develop Equation 4, to the form

1 (—; 1
Z: :ZO (—) . (108.)
in n,2 T 2j(a)—a)o)+ig

(ON) n'z T
Internal losses in the cavity can be accounted for by the addition of the term 1/Qi to the denominator.
The terms of the form nZ% have been designated external O/, Q,. The final expression for Z;, then

becomes

| 1
7o =
" OQe Zj(co—a)o)+ 1 1

R + ,
20 Qi Qe

(10b)

An equivalent circuit appropriate for the expression for Z;, as developed above is given in Fig. 11.
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Figure 11. Reduced lumped equivalent circuit of a loaded transmission line cavity.

O- l oN'

The reciprocal of the term L +-1 in Equation 10b is commonly designated the loaded Q of the cavity

1 e

and incorporates the effect of external loading on the performance of the cavity.
4. Frequency response of a resonant cavity.

It is often important to know the frequency response of a cavity. It may be defined as the ratio of
power absorbed by the cavity at frequency @, usually lying close to the resonant frequency @y, the
power absorbed at resonance, the maximum power. A common measure of the effect is the spread of

frequencies dw in which the ratio is above 1/2, the 3 dB bandwidth.
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Power absorbed at frequency @, P(w) is equal to the incident power minus reflected power, so that with

p(w) the reflection coefficient at frequency ,
2
P(0)=P|1-|plo)’ |, (11)

with P; the incident power.

The 3 dB bandwidth is therefore given by the relation

1—‘p(a)0 ié’%)‘ 1

(12)
2
1-|p(e ) 2
The reflection coefficient p(w) is
pl)= Zin(0)-2y (13a)
Zin (a)) +Zy
Substitution from Equation 10b yields
L_zj(‘”‘wo)_i
plo)=Le— % C (13b)
L 42 0-a,) + L
Qe 20 Q

where Q is the “loaded O”, the reciprocal of é+ Ql, .

When the above expressions are introduced into Equation 12, it reduces to

2 2 2
o1 |
1 _ Qe Q 20 _ l 1 _ Qe Q ) (14)

2 2 2
( 1 1) (é‘w] 2 ( 1 1)
Qe Q' a)O Qe Q'

The value of w/w, obtained from the above is,

5_w:L+i:L+L’+L (15)
oy O, O 0O, 0O, 0

It is apparent from the above equation for Sw/®, that the power delivered to external source and load

impedances as governed by external Qs has the same effect on the frequency response as the power

delivered to internal loss mechanism.
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Appendix

Transmission line inverter circuit.

Consider a transmission line network shown in the figure below:

) —>— 0 —>

V.
zj is given by the product of three

2

V
The relationship between the column vectors [llj and (
1

component network matrices (0), (jB) and (6) so that,

WECECH (16

(9):[ cos®, jZosiné?j ond (jB):(l oj.

jY,sin@,  cosd jB 1

Vi cosd, jZ,sn@\( 1, O cosd, jZ,sin@)\(V,
Thus =l o . (17)
I, jY,sin@,  cos@ jB, 1)\ jY,sin@, cosd@ I,

When the matrix multiplication is executed the relationship between the two sets of circuit variables

The matrices are:

becomes,
WY [ cos20-%2sin20,  jZ,(sin26— BZ,sin* 0)) (V, .
I, jYO(sin29+BZO cos’ 19), c0s26 —Zvsin26 L)
For the case of B =2Y,cot26, the above equation reduces to
V. 0, iZ, tan@ \( V.
H=| J£o 2| (19)
I, JjY,cotd, 0 I,

or,
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V,=jZ,l,tan@,

I, = jYV,cot@. (20a)
The resultant relation between the impedances Z, =V, /1, and Z, =V, /1, follows,
ZZ,=7;tan’ 0. (20b)

Q.ED.



