UNIVERSITY OF TORONTO

Department of Electrical and Computer Engineering ECE320H1F – Fields and Waves Course Outline 2005

		LEC 01			LEC 02	
Name	Mr.	M. Sticke	1	Professor M	I. Mojahedi ((coordinator)
Office Room		BA4175			BA5124	
Email Address	stickel@v	vaves.utor	onto.ca	mojahed	li@waves.ut	oronto.ca
	Mondays	1-2pm	BA1210	Mondays	10-11am	BA1210
Lecture Times	Wednesdays	9-10am	WB130	Tuesdays	1-2pm	GB220
	Thursdays	10-11am	RS208	Fridays	1-2pm	GB221

TUTORIAL SCHEDULE

TUT01:	Thursdays	1 pm-3 pm	SF3201	(Alternates starting Sept. 22 nd)
TUT02:	Thursdays	4 pm-6 pm	GB405	(Alternates starting Sept. 22 nd)

LABORATORY SCHEDULE

PRA01:	Thursdays	3 pm-6 pm	GB450	(Alternates starting Oct. 20 th)
PRA02:	Fridays	3 pm-6 pm	GB450	(Alternates starting Oct. 14 th)
PRA03:	Fridays	9 am-12 pm	GB450	(Alternates starting Oct. 21 st)
PRA04:	Tuesdays	4 pm-7 pm	GB450	(Alternates starting Oct. 18 th)
PRA05:	Tuesdays	9 am-12 pm	GB450	(Alternates starting Oct. 18 th)
PRA06:	Fridays	9 am-12 pm	GB450	(Alternates starting Oct. 14 th)

TEXTBOOK

Required

David K. Cheng, Field and Wave Electromagnetics, 2nd Ed., Addison-Wesley, 1992

Recommended

- 1) R. Feynman, R. Leighton, and M. Sands, *The Feynman Lectures on Physics Vol.* 2, Addison-Wesley, 1970
- 2) M. N.O. Sadiku, Elements of Electromagnetics, Oxford, 2001

COURSE GRADING

First Exam (Thursday, October 20 th , 7pm – 8:15pm)	20 %
WB130: Last names A through K	
WB219: Last names L through Q	
WB342: Last names R through Z	
Second Exam (Wednesday, November 16 th , 7pm – 8:15pm)	20 %
WW111 (Woodsworth Room 111): All students	
Laboratory Work	20 %
Final Exam	40 %

COURSE WEBSITE

http://ccnet.utoronto.ca/20059/ece320h1f/

ECE320H1F – Fields and Waves Course Timetable 2005

Week	Lectures	Tutorials	Labs
Sept. 8 – 9	L1: Course introduction	_	-
Sept. 12 – 16	L2: TL circuit model L3: Wave chars. on infinite lines L4: TL wave equations solutions	_	_
Sept. 19 – 23	L5: Forward and backward waves L6: TL examples L7: Wave char. on finite lines	Tutorial #1 Phasors	-
Sept. 26 – 30	L8: Matched TL L9: TLs as circuit elements L10: Lines with resistive terms.	_	-
Oct. 3 – 7	L11: Max/Min voltage along TLs L12: TL circuits L13: Transients on TLs	Tutorial #2 Lines with arbitrary Z_L	-
Oct. 11 – 14	Oct. 10: Thanksgiving (no lecture) L14: Reflection diagrams L15: Smith chart derivation	_	Lab #1 (02, 06) Waves on Transmission Lines
Oct. 17 – 21	L16: Smith chart applications L17: Electromagnetic fields L18: Div theorem, curl, etc.	Tutorial #3 Impedance Matching	Lab #1 (01,03,04,05) Waves on Transmission Lines
Oct. 24 – 28	L19: Maxwell's equations L20: Potential functions L21: Solutions of wave equations	_	Lab #2 (02,06) Design of a Double- Stub Matching Network
Oct. 31 – Nov. 4	L22: Source-free wave equations L23: EM boundary conditions L24: Plane waves in lossless media	Tutorial #4 Vector Calculus Review	Lab #2 (01,03,04,05) Design of a Double- Stub Matching Network
Nov. 7 – 11	L25: TEM waves L26: Polarization of plane waves L27: Plane waves in lossy media	-	Lab #3 (02, 06) Resonant Cavity
Nov. 14 – 18	L28: Group velocity L29: Dispersion L30: Flow of EM power	Tutorial #5 Waveguides	Lab #3 (01,03,04,05) Resonant Cavity
Nov. 21 – 25	L31: Normal inc. at conductor L32: Normal inc. at dielectric L33: Normal inc. at mult. diels.	-	Lab #4 (02, 06) Coaxial Photonic Crystal
Nov. 28 – Dec. 2	L34: Oblique inc. at dielectric L35: Snell's law, total ref., etc. L36: Radiation fields of el. dipoles	Tutorial #6 Homework and Review	Lab #4 (01,03,04,05) Coaxial Photonic Crystal

ECE320H1F – Fields and Waves Detailed Lecture Schedule 2005

(subject to change)

Lecture Number	Lecture Content	Textbook Sections
1	Course introduction, overview, and motivation	9-1
2	Introduction to transmission lines Distributed transmission-line circuit model General transmission-line equations in time	9-3 introduction
3	Wave characteristics on an infinite transmission line Time-harmonic transmission-line equations Propagation constant	7-7.1 9-3.1
4	Transmission line wave equation solutions Characteristic impedance	9-3.1
5	Forward and backward traveling waves Phase velocity	
6	Transmission line examples (lossless, low-loss, distortionless) Attenuation constant from power relations	9-3.1 9-3.3
7	Wave characteristics on finite transmission lines Input impedance	9-4 introduction
8	Matched transmission line Transmission line as circuit elements (introduction)	9-4.1
9	Transmission line as circuit elements (open, short, quarter-wavelength, half-wavelength)	9-4.1
10	Lines with resistive termination (reflection coefficient, standing wave ratio)	9-4.2
11	Maximum and minimum voltage locations along a line	9-4.2
12	Transmission-line circuits (reflection coefficient at the source, multiple reflections)	9-4.4
13	Transients on transmission lines	9-5 intro.
14	Reflection diagrams Pulse excitation	9-5.1 9-5.2
15	Smith chart for lossless lines (introduction and derivation)	9-6 introduction
16	Smith chart applications (plotting Γ , Z_{in} , Y_{in} , standing wave ratio)	9-6 introduction

Lecture Number	Lecture Content	Textbook Sections
17	Electromagnetic fields (vector and scalar fields) Coordinate systems, gradient, divergence	2-4, 2-5, 2-6, 2-7
18	Divergence theorem, curl, Stokes's theorem Helmholtz's theorem	2-8, 2-9, 2-10, 2-11, 2-12
19	Maxwell's equations for time-varying fields (differential and integral forms)	7-3
20	Potential functions (nonhomogeneous wave equations for A and V)	7-4
21	Solutions of wave equations for potentials	7-6.1
22	Source-free wave equations Time-harmonic fields and wave equations	7-6.2 7-7.2
23	Electromagnetic boundary conditions	7-5
24	Plane waves in lossless media	8-1, 8-2 intro.
25	Transverse electromagnetic (TEM) wave Polarization of plane waves (introduction)	8-2.2 8-2.3
26	Polarization of plane waves (linear, circular, elliptical)	8-2.3
27	Plane waves in lossy media (propagation constant, low-loss dielectrics)	8-3 intro. 8-3.1
28	Plane waves in lossy media (good conductors) Group velocity	8-3.2 8-4
29	Dispersion	8-4
30	Flow of electromagnetic power and the Poynting vector Instantaneous and average power densities	8-5
31	Normal incidence at a plane conducting boundary	8-6
32	Normal incidence at a plane dielectric boundary	8-8
33	Normal incidence at multiple dielectric interfaces Wave impedance of the total field Impedance transformation with multiple dielectrics	8-9
34	Oblique incidence at a plane dielectric boundary Example of perpendicular (E) polarization	8-10.2
35	Oblique incidence at a plane dielectric boundary Snell's law, total reflection, Brewster's angle	8-10 int. 8-10.1
36	Radiation fields of elemental dipoles	11-2.1