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1.
Introduction, general resonance

A linear, single input resonant system is an assembly of objects exhibiting all of the following properties:

(i) Power input by external source at a frequency produces a steady state response at the same frequency.

(ii) Some of the energy supplied by the source is stored in the system.

(iii) There exists at least one frequency, such that no portion of power absorbed by the system at this frequency is returned to the source.

The definition given above will be illustrated for three systems considered below.  In all three cases the source of energy is a generator of EMF=
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 and internal resistance Rs.

Case (i):  The generator driving a load resistance RL as shown in Fig. 1.
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Figure 1.  Generator driving a load resistance RL.

(a)  System response:  current i,
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(b)  Power supplied by the source ps,
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(c)  Power absorbed by the load pL,
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(d)  Energy stored by the load eL,
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The system is linear but not resonant.  

Case (ii)  The generator driving an RL, C circuit shown in Fig. 2
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Figure 2.  Generator driving RL, C circuit.

(a)  System responses:  current i, capacitor voltage vC, resistor voltage vR and load voltage vAB. 
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(5c)

(b)  Power supplied by the source ps,
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The term 
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 varies in the course of a cycle between positive values, indicating energy flow into the system, and negative values indicating flow of energy into the source.

(d)  Energy stored in the load eL,
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(7)

It is apparent from the above that energy varying with time is stored in the system due to the presence of the capacitor, a circuit element capable of storing electric energy.

The system thus is linear, capable of storing energy but is not a resonant system because it exchanges energy with the source.

Case (iii)  The generator driving an RL, L, C circuit shown in Fig. 3.
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Figure 3.  Generator driving RL, L, C circuit.

(a)  System responses:  current i, capacitor voltage vc, inductor voltage vL and load voltage vAB.

The current i,
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with 
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If one introduces the symbol 
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(8b)

The capacitance voltage vC is
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(8c)

The inductance voltage VL is, by analogous procedure,
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(8d)

The load voltage vAB is,
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(8e)

(b)  Power supplied by the source, ps is
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(9a)

One observes that for the case of 
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 both phase angles ( and ( are zero so that the expression for power ps delivered by the source is proportional to cos2(t and is always positive, implying that no power is returned to the source.  The requirement that 
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Because of the presence of capacitance C and inductance L the system is capable of storing energy.  It is thus apparent that it satisfies all three requirements (i), (ii), and (iii) characterizing a resonant system, and is therefore an example of such, resonating at frequency f0,
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Some additional features of the R.L.C. circuit considered will be presented in paragraphs (c) and (d) below.

(c)  Power pL0 dissipated by the load at resonance, with 
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which is equal to the power supplied by the source at resonance as evident from Eq. 9a.

(d)  Energy 
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with i0 and vc0 designating current and capacitance voltage amplitudes respectively at 

( = (0.
(12a)

Substitution from Eq. 8b and 8c reduces the above relation to
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(12b)

But 
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It is apparent from the above result that in the RL, L, C resonant system considered the total energy stored at resonance does not vary with time.  This feature as observed in the special system discussed is an illustration of general property of all linear resonant systems, stated here without proof, of storing time independent total energy at resonance.

2.
Series resonant circuit

The case (iii) system described above and shown in Fig. 3 is a series resonant circuit, a system commonly employed as such, or as a convenient approximation of other resonant systems.  For these reasons some additional properties thereof will be described below.

A feature of interest is the behaviour of the circuit at frequencies close to resonance.  In the discussion to follow we shall employ standard phasor quantities I and V instead of instantaneous circuit quantities i and v used earlier.

The common loop current I is, from the diagram of Fig. 3, given by the relation
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(13a)

When the expression for the resonant (angular) frequency 
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 is introduced into the above equation the expression for the current I becomes
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The final form for I obtained above will now be formulated in convenient dimensionless parameters.  We shall also limit the frequencies considered to values close to resonant frequency 
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 and is the ratio of lossy portion of the circuit impedance and a representative of reactive portions.  It should be borne in mind that for 
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 is called the quality factor Q of the circuit and will be shown below to be a measure of the relationship between power dissipated in the circuit and energy stored therein, and will also govern the frequency behaviour of the circuit in the vicinity of the resonance.

It should also be noted that for frequencies close to resonance it is convenient to approximate the value ( by (0, except in the term (-(0.

When the term Q and the approximation of ( to (0 is introduced into Eq. 13b, the expression for the current I reduces to
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(14a)

The above relation may also be reformulated by stating that the loop impedance Z in the vicinity of resonance is 
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The equation for current I derived above exhibits several features characteristic of all resonant phenomena:

(i)  At resonance the driving voltage V0 and the response I are in phase due to the disappearance of the imaginary term 
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(ii)  the driven current amplitude is maximum, Imax=
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The two observations can be considered to be the consequence of the fact that at resonance the loop impedance is pure resistance.  It should be mentioned that although in the circuit considered the response current amplitude is maximum at resonance, there are circuits where the current amplitude is minimum.  It is, however, in all cases in phase

with the driving voltage V0.

We shall next consider the off resonance behaviour of the circuit.  As the frequency moves away from the resonance the imaginary term 
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 increases the magnitude of the denominator in Eq. 14a for the current I, reducing the amplitude thereof and introducing a phase shift between the phasors of the driving voltage V0 and the current I.  Interesting conditions are obtained when the magnitude of the imaginary term in the loop impedance reaches the value of the real value therein, i.e. when
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At this frequency the magnitude of the impedance increases from its resonant value of QXC0 to 
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 QXC0, reducing the value of loop current amplitude to 
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 is accompanied by the reduction of the power dissipated to one-half of its value at resonance.  Expressed in decibel units the level of power reduction is 3dB.  The frequency shift (-(0  from resonance to 3dB power reduction is, from Eq. 15a, 
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.  The range of frequencies (( for which power absorbed (and dissipated) lies between maximum at resonance and 3dB power reduction is thus 
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and is called the 3dB bandwidth of the circuit, and is often employed as a measure of frequency range of the resonant circuit effective loop impedance.  It follows from Eq. 14b that the loop impedance Z, approximated in the neighbourhood of resonance by expression 
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 increases rapidly as the frequency moves away from the resonance with the reactive part dominating the magnitude.  The exact value of the reactive part, 
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 is seen to approach large capacitive reactances for low frequencies, and large inductive for high frequencies.  As a consequence the ability of the circuit to absorb power at frequencies significantly removed from the resonance is strongly reduced.

An important aspect of the circuit performance is the phase between the driving voltage V0 and the driven current I(angle ( of Eq. 8a).  As was mentioned earlier, at resonance the two quantities are in phase.  As the frequency moves away from the resonance the loop impedance acquires reactive components affecting the phase relationships between input voltage and current.  At 3dB points, i.e. at 
[image: image63.wmf]Q

0

0

2

1

w

w

w

±

=

-

 the phase is (45(, the current leading the voltage at the lower edge of the band, where the reactive component of the input is capacitive, and the current lagging the voltage where the reactive component is inductive. 

The features of the resonant circuit mentioned above are diagrammatically represented in Fig. 4.
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Figure 4.  Amplitude and phase relationships near resonance.

Because the ability of the resonant circuit to absorb power is frequency-sensitive, it is commonly used as a device to select a desirable frequency from a manifold thereof.  In communications applications it is often employed as a frequency selective element of a tuner.

It may be useful to consider in some detail the significance of the quality factor Q.  It governs two important properties of a resonant circuit:  the frequency selectivity as expressed in 3dB bandwidth 
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 and the value of impedance at resonance, 
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.  It is important to note that the factor depends not only on the resistive element of the load, but also on the resistive element of the source.  Thus frequency selective properties of a resonant circuit do not depend solely on the loss mechanism of the load, but also on the loss mechanism of the source.

Another important property of the Q factor is its effect on the capacitance and inductance voltages at resonance.  At resonance the

impedance of the capacitance and inductance are 
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.  The circuit current I0 at resonance is 
[image: image69.wmf](

)

S

L

R

R

V

+

0

.  Thus the reactance voltages are


[image: image70.wmf](

)

Q

jV

C

j

R

R

V

V

S

L

C

0

0

0

0

-

=

-

+

=

w

,

and,


[image: image71.wmf](

)

Q

jV

L

j

R

R

V

V

S

L

L

0

0

0

0

=

+

=

w

.
(16)

The magnitudes of reactance voltages are thus Q times larger than the voltages that would have appeared across them, had they been driven by the source independently.  Because the reactive voltages are of opposite polarity the total voltage across the series combination of the inductance and capacitance is zero and the voltage appearing across the load is 
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 and depends only on the loss elements of the loop.

The quality factor also bears on the energy balance in the circuit at resonance.  The instantaneous energy stored in the inductance and capacitance are 
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 respectively.  At resonance the phasor of the current i is 
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The total energy stored W0 is
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But, because 
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the equation for W0 reduces
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(18b)

The following conclusions can be drawn from the last equation:

(i)  At resonance the total energy stored in a series resonant circuit is independent of time.

(ii)  
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 is the RMS value of the amplitude of the driving EMF.  The term 
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 is the power P0 dissipated in the total resistive portion of the circuit.  Eq. 18b can thus be expressed in the form
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The result obtained above can be formulated in terms of the statement that the quality factor Q of a series resonant circuit is the ratio at resonance of the total energy stored multiplied by angular resonant frequency, and the total power dissipated in the circuit.

The results (i) and (ii) listed above have been derived analytically for a series resonant circuit.  They apply, however, to all resonant circuits.  Also, expression for the 3dB bandwidth 
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 is exactly valid for series and parallel resonant circuits.  For other resonant configuration the relation is of the form 
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 where ( is a numerical factor commonly lying between one and two.

The relationships involving Q were derived for steady state conditions.  They also occur in analysis of transient behaviour.  Equation of motion for a harmonically excited series resonant circuit is
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The general solution incorporating effects of initial condition is
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where 
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 is the solution of the homogeneous equation
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which, on substitution for 
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or,
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The solutions of this equation are
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For the common case of low loss systems the term R/2L is smaller than (0 and it is convenient to express ( in the form
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Substitution of Q for the term L(0/R reduces the equation to the form
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The transient solution i1 is thus
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where 
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It is apparent from Eq. 24 that the time constant 2( for the linear transient is 
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, where ((0 is the 3dB bandwidth of the steady state response.  In as much as the quadratic quantities such as energy and power are proportional to the squares of linear quantities, the decays thereof are determine by the term
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The reciprocal of the 3dB bandwidth ((0  is thus the time constant of the transient behaviour of stored energy and power in a series resonant circuit.  Similar relations also obtain for more complicated resonant systems.

3.  
Parallel resonant circuit

A circuit dual to a series resonant circuit is a parallel resonant circuit shown in Fig. 5.
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Figure 5.  Parallel resonant circuit

Results obtained for series resonant circuit can be adapted to describe properties of a parallel resonant circuit by carrying out the duality transformation switching the words series ( parallel, impedance ( admittance and voltage ( current.  Thus whereas in series resonant circuit the driving quantity was voltage and the responding quantity was current as common to all components of the circuit, in parallel resonant circuit the driver is current and responding quantity is the common voltage.

Presented in Table 1 are dual relationships pertaining to the two circuits discussed.

Table 1

	Quantity
	Series resonant circuit
	Parallel resonant circuit

	impedance - admittance
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	impedance - admittance near resonance
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	impedance - admittance at resonance
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	quality factor Q
	
[image: image112.wmf]Q

R

R

L

L

S

=

+

0

w


	
[image: image113.wmf]Q

G

G

C

L

S

=

+

0

w



	resonant frequency f0
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ELECTROMAGNETIC CAVITY

1.
Electromagnetic cavity

Electromagnetic cavity is a volume of space enclosed by electromagnetically impenetrable, usually metallic walls.  If the cavity is to interact with outside space, the cavity walls are breached by a small opening commonly called an iris through which energy can pass into or out of the cavity.  Examples of cavities are sections of transmission systems such as coaxial lines or waveguides terminated at both ends by elements impenetrable, or nearly so for electromagnetic modes of the corresponding transmission systems.

A prototype of a transmission system cavity is a section of transmission line terminated at both ends by devices inhibiting totally or partially passage of electromagnetic energy through them.  The prototype may often serve as an equivalent circuit of wide range of cavities and will be analysed below.

2.
Transmission line cavity with single iris

The system considered is a section of transmission line of characteristic impedance Z0 and phase velocity u, of length l.  One end of the section is terminated in a short circuit while the other end is connected to a source of frequency ω through identical transmission line.  An iris allowing passage of some electromagnetic energy into the cavity is inserted between the feed line and the cavity section.  Electromagnetic properties of the iris are equivalent to a susceptance B.  The circuit representation of the system is shown in Fig. 1.
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Figure 1.  Transmission line cavity.

The parameter describing most of the circuit properties of the cavity is the input impedance Zin which, however, must be associate with a specific pair of terminals.

A useful relationship in the discussion of the problem is the relation given below in Fig. 2 and proved in the Appendix.
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Figure 2.  Inverter circuit.

The equivalent circuit of the cavity as shown in Fig. 1 can be modified to the form shown in Fig. 3.
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Figure 3.  Equivalent circuit of transmission line cavity.

The amended circuit identifies convenient terminals of driving point impedance Zin and allows one to employ standard transmission line circuit analysis, as will be carried out below.

The driving point impedance Zin at terminals MM( is related to the impedance Z at terminals NN( by the relationship given in Equation 1 in Fig. 2,
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with n = cot(  and B = 
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But Z is the impedance of a short circuited section of length d and is 
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We shall investigate the resonance behaviour of the circuit, i.e. when Zin = 0 or (.  The choice of the two extreme possibilities is suggested by the behaviour of conventional lossless series or parallel resonant circuits.  We shall start the analysis of the circuit behaviour in the frequency range close to where Zin = (, i.e. where 
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with 
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The expression for Zin becomes
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When one observes that for a lossless parallel resonant circuit the input impedance near resonance is 
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 the expression for Zin derived in Eq. 4 can be considered to be the input impedance of equivalent circuit shown in Fig. 4.
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Figure 4.  Lumped equivalent circuit of transmission line cavity near resonance.

We note that input impedance of a lossy parallel resonant circuit is 
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, describing the behaviour of circuit shown in Fig. 5.
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Figure 5.  Lossy parallel resonant circuit.

Thus a good approximation of the impedance of a lossy transmission line cavity is, by analogy to the parallel resonant circuit the modification of the expression for Zin in Equation 4
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leading to the equivalent circuit shown in Fig. 6.
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Figure 6.  Equivalent circuit of a lossy transmission line in the vicinity of resonance.

In discussion to follow it will be necessary to consider frequencies substantially removed from resonance.  Under these circumstances one is reminded that the exact expression for cavity input impedance is given in Equation 2, 
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The input impedance of a resonant cavity at a frequency far removed from resonance is very nearly zero as viewed at terminals MM(, i.e. the cavity in these frequency ranges behaves as a short circuit.  It is convenient to describe the frequency response of the cavity in terms of the SWR produced on the input line.  The coordinates employed are shown in Fig. 3 and position of VSWR minimum will be designated Si.
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Figure 7.  Location of VSWR minimum in the vicinity of resonance for undercoupled and 

overcoupled cavities.

The behaviour of the voltage minimum position as the frequency is swept through resonance and is conveniently visualized by comparing it with the position of voltage minimum produced by a short circuit located at observation terminals MM( of Fig. 3.  Plotted in Fig. 7 as a dotted line is the position of voltage minimum with reference to a point 
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 away from the position of the short at MM(.  As the frequency increases wavelength becomes shorter and the minimum moves closer to the position of the short, the process indicated by the slope of the dotted line.

When the short is replaced by the cavity, at frequencies sufficiently removed from resonance on the low side of the cavity impedance approximates zero as evident from Eq. 2 and the location of voltage minimum follows the dotted line of Fig. 7.  As the frequency approaches resonance the conditions change.  Cavity impedance below resonance is inductive as is apparent from equivalent circuit of Fig. 6 and the distance Si of voltage minimum from terminals MM( begins to drop faster than would be the case of short circuit termination.  The conditions change when the frequency approaches resonance because of the effect of resistive term R = QZ0 as evident from Fig. 7 and Fig. 6.  At resonance the impedance of the cavity is purely resistive and its value is 
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Expression 
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 will occur frequently is subsequent discussions and it will be convenient to introduce a symbol Qe for it, i.e. 
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Depending on whether the resonant resistive impedance is smaller than, larger than, or equal to Z0 there will obtain three different conditions as listed below.

(i)
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:  in this case voltage minimum will occur at the same location as voltage null produced by short circuit termination.

(ii)
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:  voltage maximum will occur at the null location produced by short circuit termination.

(iii)
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:  the cavity is matched to the line, no standing wave pattern is present.

The three cases considered above are designated undercoupled for 
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As the frequency is increased beyond resonance the input impedance acquires capacitive character.  For the undercoupled case the distance of the observed minimum, moves initially away from the reference terminals.  In high frequencies the input impedance begins to approximate short circuit and minimum approaches the location of selected minimum of the short-circuited termination as shown in Fig. 7.

The pattern of behaviour for overcoupled case is different in that at resonance, when input impedance Zin is real, and is larger than Z0 at reference terminals the voltage is maximum and minimum occurs 
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 away.  When the behaviour of voltage minima is traced in this case as the frequency is increased from its initial off resonance value the minimum moves towards the reference point but as the frequency approaches resonance it does not reverse its motion as was the case for undercoupled cavity, but stops at 
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 distance from reference terminals, which become the location of voltage maximum as mentioned earlier.  As the frequency is increased beyond resonance the minimum continues to move toward the location of short circuit minimum, but not the one from which it started but one 
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 closer to reference terminals, as shown in Fig. 7.

External Qe is thus seen as a parameter which quantifies the interaction of the inside of the cavity with external environment.

3.
Loaded Transmission Line Cavity

In many instances the cavity has two input-output portals.  The input portal connects the driver to the cavity while the output portal, usually an iris at the original short circuit wall of the cavity connects the inside of the cavity to the load which absorbs a portion of power supplied by the source, modified by interposition of the cavity.  A common application of this nature is the use of the cavity as a bandpass filter.

When the short circuit wall of the cavity is replaced by an iris the equivalent circuit of the cavity as shown in Fig. 1 is modified to the configuration shown in Fig. 8.
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Figure 8.  Loaded transmission line cavity.

The effect of the susceptance B( can be conveniently evaluated by employing the impedance transformation of Equation 1 as shown in Fig. 2 and shown in Fig. 9.
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Figure 9.  Application of inverter circuits to a transmission line cavity.

The resultant equivalent circuit of the loaded cavity is given in Fig. 10.
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Figure 10.  Lumped equivalent circuit of loaded transmission line cavity.

Analysis of the circuit of Fig. 9 is simplified if one expresses the terminal load 
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The cavity input impedance Zin is then given by
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Inasmuch as tan(d( in the vicinity of resonance is a small number and 
[image: image165.wmf]Z

¢

 is usually a small perturbation of the short circuit termination the expression for Zin can be approximately reduced to
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(9b)

Power series expansion of tangent function u in the vicinity of resonance reduces the expression for Zin, in a manner analogous to that employed to develop Equation 4, to the form
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Internal losses in the cavity can be accounted for by the addition of the term 
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 to the denominator.  The terms of the form n2
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 have been designated external Q(e, Qe.  The final expression for Zin then becomes
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(10b)

An equivalent circuit appropriate for the expression for Zin as developed above is given in Fig. 11.
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Figure 11.  Reduced lumped equivalent circuit of a loaded transmission line cavity.

The reciprocal of the term 
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 in Equation 10b is commonly designated the loaded Q of the cavity and incorporates the effect of external loading on the performance of the cavity.

4.  Frequency response of a resonant cavity.

It is often important to know the frequency response of a cavity.  It may be defined as the ratio of power absorbed by the cavity at frequency (, usually lying close to the resonant frequency (0, the power absorbed at resonance, the maximum power.  A common measure of the effect is the spread of frequencies (( in which the ratio is above 
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Power absorbed at frequency (, P(() is equal to the incident power minus reflected power, so that with ((() the reflection coefficient at frequency (,
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with Pi the incident power.

The 3 dB bandwidth is therefore given by the relation
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The reflection coefficient ((() is
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Substitution from Equation 10b yields
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where Q is the “loaded Q”, the reciprocal of 
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When the above expressions are introduced into Equation 12, it reduces to 
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The value of 
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 obtained from the above is,
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It is apparent from the above equation for 
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 that the power delivered to external source and load impedances as governed by external Qs has the same effect on the frequency response as the power delivered to internal loss mechanism.

Appendix

Transmission line inverter circuit.

Consider a transmission line network shown in the figure below:


[image: image183.wmf]Z

0

Z

0

V

2

V

1

jB

+

+

-

-

q

q

I

1

I

2


The relationship between the column vectors 
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 is given by the product of three component network matrices ((), (jB) and (() so that, 
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The matrices are:
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When the matrix multiplication is executed the relationship between the two sets of circuit variables becomes,
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For the case of 
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or,



[image: image198.wmf]q

tan

2

0

1

I

jZ

V

=

,



[image: image199.wmf]q

cot

2

0

1

V

jY

I

=

.
(20a)

The resultant relation between the impedances 
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