Problem Set #2

ECE357 /ECE320 University of Toronto

- 1. Starting with general transmission line equations in the time domain, derive the transmission line wave equation for the current i(z,t).
- 2. Derive the transmission line wave equation for current in sinusoidal steady state form.
- 3. Prove that the solution to $\frac{\partial^2 \overline{V}(z)}{\partial z^2} = \gamma^2 \overline{V}(z)$ is given by $\overline{V}(z) = V_0^+ \exp(-\gamma z) + V_0^- \exp(+\gamma z)$.
- 4. For a distortion-less line, find the propagation constant, attenuation constant, phase constant, phase velocity and characteristic impedance.
- 5. The figure shows two charged conductors immersed in a lossy dielectric of conductivity σ and dielectric constant ε .
 - a. Show that $RC = \frac{C}{G} = \frac{\varepsilon}{\sigma}$, where $R = \frac{1}{G}$ is the resistance associated with the lossy dielectric and *C* is the capacitance between the two conductors.
 - b. From the results in part (a), find the leakage conductance per unit length of coaxial cable of inner radius a and outer radius b.

- 6. The figure shows a RG58C/U coaxial cable, idealized to solid outer conductor. Let us assume that the cable is a low loss (high frequency limit) transmission line with characteristic impedance of $Z_0 = 50\Omega$.
 - a. What is the transmission line capacitance?
 - b. What is the transmission line inductance?
 - c. What is the transmission line resistance?
 - d. What is the transmission line conductance?
 - e. Find a frequency range for which the high frequency assumption used is valid.

Inner conductor: Copper, d = 0.9 mm, $\rho_c = 1.7 \times 10^{-8} \Omega$ m

Dielectric: Polyethylene, T = 1.02 mm, $\rho_d = 10^{14} \Omega \text{ m}$, $\varepsilon_r = 2.3$ Outer conductor: Copper, t = 1 mm, $\rho_c = 1.7 \times 10^{-8} \Omega \text{ m}$

- 7. The attenuation constant of a 50 Ω distortionless line is 0.01dB/m and its capacitance is 0.1nF/m.
 - a. What are the values of the line resistance, conductance, and inductance per meter?
 - b. What is the phase velocity of the propagating waves?
 - c. What are the ratios of the magnitude of the propagating fields at 1km and 5km with respect to the starting point at z = 0?
- 8. Use the relation $\alpha = \frac{P_{dis}}{2P(z)}$ to find the attenuation constant for a low loss line (high frequency limit).