Problem Set #3

ECE357 /ECE320 University of Toronto

- 1. Plot the voltage standing wave patterns for the case of a lossless line
 - (a) Terminated with an open $(R_L \to \infty)$.
 - (b) Terminated with a short ($R_L \rightarrow 0$).
 - (c) How are these patterns different from those obtained in class?
- 2. The standing wave ratio S on a lossless 50Ω line ($Z_0 = R_0 = 50\Omega$) terminated in an unknown load impedance is found to be 3. The distance between successive voltage minima is 20cm and the first minimum is located 5cm from the load. Determine
 - a. the reflection coefficient Γ ,
 - b. the load impedance Z_L ,
 - c. the length of a lossless line and a terminating resistive load that can replace the original load (Z_L) without effecting the waveforms to the left of the original Z_L .
- 3. A lossless transmission line has a capacitance of 200pF/m and an inductance of 0.5μ H/m. It is excited with a 1kHz sinusoidal source. The magnitude of the voltage measured across a 35Ω load is 100V. Find
 - a. the line characteristic impedance R_0 ,
 - b. the voltage reflection coefficient Γ at the load,
 - c. the phase velocity v_p ,
 - d. the wavelength λ_0 ,
 - e. the forward and backward traveling wave amplitudes $\left|V_0^+\right|$ and $\left|V_0^-\right|$,
 - f. the line propagation constant β .
- 4. A transmission line of characteristic impedance $R_0 = 50\Omega$ is to be matched to a load impedance of $Z_L = 40 + j10\Omega$ through a length l' of another transmission line of characteristic impedance R_0' . What are the required l' and R_0' for matching?
- 5. A generator with an open circuit voltage $V_g = 10\cos(8000\pi t)$ [V] and internal impedance $Z_g = 40 + j30$ [Ω] is connected to a 50[Ω] distortionless line. The line has a resistance of 0.5 [Ω/m] and its lossy dielectric medium has a loss tangent of 0.18%. The line is 50 [m] long and is terminated in a matched load. Find
 - a. the instantaneous expressions for the voltage and current at an arbitrary location on the line,
 - b. the instantaneous expressions for the voltage and current of the load,
 - c. the average power transmitted to the load.

- 6. A 2m lossless air-spaced transmission line with a characteristic impedance of 50Ω is terminated with an impedance of $40 + j30\Omega$. At an operating frequency of 200MHz the phase velocity in the line is the same as the speed of light in vacuum. What is the line input impedance?
- 7. A sinusoidal voltage generator with $V_g=0.1\angle0\,\mathrm{V}$ and internal impedance $Z_g=R_0$ is connected to a lossless transmission line having a characteristic impedance $R_0=50\Omega$. The line is l meters long and is terminated with a load resistance $R_L=25\Omega$. Find
 - a. V_i, I_i, V_L, I_L in terms of the line length l,
 - b. the standing wave ratio on the line,
 - c. the average power delivered to the load.