Problem Set #4 ECE357/ECE320 University of Toronto

- 1) Let $Z_L = 60 + j$ 43 $[\Omega]$ and $Z_o = 50 [\Omega]$. Find the input impedance with l = 0.32 [m] and line wavelength of $\lambda = 0.854$ [m].
- 2) The inductance and capacitance of a lossless 50 [Ω] line are 0.251 [μ H/m] and 99.5 [pF/m]. The line is attached to a source of $10\cos(2\pi 10^6 t)$ with internal impedance of 1[Ω]. The length of the line is 5 [m] and is terminated on a load resistance of 50 [Ω].
- a) What are the instantaneous voltage and current at any point?
- b) What is the power delivered to the load?
- 3) This problem answers the question why we want to minimize the standing wave ratio on the line. Let P_i be the incident time averaged power approaching a point on a lossless line, P_r the time averaged reflected power on the line, and P_t the time averaged transmitted power available to do work on the load. You can think of the P_t as a useful power since, for example, it can be radiated by an antenna connected to the line. Show that the following is true:

$$P_{t} = P_{i} - P_{r} = \frac{\left| V_{o}^{+} \right|^{2}}{2Z_{o}} \left(1 - \left| \Gamma_{L} \right|^{2} \right) = P_{i} \left(1 - \left| \Gamma_{L} \right|^{2} \right)$$

- 4) The capacitance of a 0.6 [m] long lossless line measured at 100 [KHz] was 54 [pF] and its inductance was equal to 0.3 $[\mu H]$.
- a) Determine Z_{o}
- b) Calculate X_{io} and X_{is} (open and short circuit impedance) at 10 MHz
- c) What is the dielectric constant of the insulating medium used in the transmission line?
- 5) The characteristic impedance of an air-line lossless transmission line is $75 [\Omega]$. Use a Smith chart to find the input impedance and input admittance at 200 [MHz] of such a line that is a) 1 [m] long and open-circuited, and (b) 0.8 [m] long and short-circuited.
- 6) For a general transmission line (lossy or lossless)
- a) Express V(z) and I(z) in terms of the load voltage V_L and load current I_L in exponential form and in hyperbolic form
- b) Express V(z) and I(z) in terms of the voltage V_i and current I_i at the input end in exponential form and hyperbolic form.

- 7) A d-c voltage V_o is applied at t=0 to the input terminals of an open-circuited air-dielectric line of length l through a series-resistance equal to $R_o/2$, where R_o is the characteristic resistance of the line.
- a) Draw the voltage reflection diagram
- b) Sketch V(z = 0, t).
- c) Sketch V(l/2, t).