Marking Scheme for ECE357 Lab #1

[] Indicates the number of marks out of 100.

- A. [3] Sketch of the waveform at point C when the line is terminated in Z_0 . [2] $Z_0=?$
- B. [5] $Z_0 = \frac{V_1(t,0)}{I_1(t,0)} = ?$ (Show calculations)
- C. [5] V vs. t graphs at C, D, E, F for R_L = 50Ω.
 [5] V vs. d graphs at t = T/2, T, 3T/2, 2T ;T=pulse width (Show calculations)
- D. [3] Complete the table. $v_{ave}=?$ [2] $\varepsilon_r=?$ (Show calculations)
- E. [5] Complete the Γ_L table. (Show calculations)
 - [5] V vs. t graphs at C for $R_L = 0 \Omega$, 20 Ω , 100 Ω and ∞
 - [5] V vs. t graphs at F for $R_L = 20 \Omega$, 100 Ω and ∞
 - [2] Discuss the relationship between the pulses at C and F
 - [5] V vs. t graphs at C, D, E, F for $R_L = 20 \Omega$
 - [5] V vs. d graphs at t = T/2, T, 3T/2, 2T ;T=pulse width (Show calculations)
 - [2] Discuss the pulse propagation along the line with a mismatch at the load
- F. [5] V vs. t graphs at C, D, E, F for $R_{source} = (50+100) \Omega$ and $R_L = 20\Omega$. [2] $\Gamma_S = ? \Gamma_L = ?$
 - [10] Calculate the corresponding theoretical bounce diagram and plot the theoretical V vs. t graphs at C, D, E, F.
 - [2] Discuss how the measured results compare to the theoretically calculated ones
- G. [5] Complete the table for the short circuit load. (Show calculations)[2] Show that the current is a maximum at one of the above frequencies and discuss why.
 - [5] Complete the table for the capacitor load. (Show calculations)
 - [5] Discuss how and why the results for the short circuit and the capacitor are different.
 - [10] Presentation and neatness

TOTAL: 100 marks