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WAVES ON TRANSMISSION LINES 

1. Object: 

This is an investigation of the fundamental properties of travelling waves using a coaxial 

transmission line. 

2. References: 

(1) Your Lecture Notes. 

(2) David K. Cheng, “Field and Wave Electromagnetics,” chapter 9. David K. Cheng, 

“Field and Wave Electromagnetics,” chapter 9. 

(3) Ramo, Whinnery, Van Duzer, “Fields and Waves in Communication Electronics,” 

Chap. 5. 

3. Travelling Waves: 

The behaviour of plane electromagnetic waves in an unbounded lossless medium and 

transverse electromagnetic waves on lossless coaxial and parallel wire lines along the direction 

of propagation z can be characterized by a current i(t,z) and a voltage v(t,z) as shown in Fig. 1.  

For such waves, Maxwell’s equations reduce to the transmission line equations 

 
Fig. 1 
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where  and c are respectively the inductance and capacitance per unit lengths of the line.  Two l



 2

possible solutions of these equations can be expressed in matrix form as follows: 
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where f1(z) and f2(z) are two arbitrary functions and 

c
u

c
Z
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are the characteristic impedance and the velocity of propagation of the line.  The general solution 

can be expressed as a superposition of these two solutions 
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The solution 
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has two important properties.  First, the voltage and current waveforms are identical except for 

the constant Z0.  Since we measure i in the +z direction, we find ( ) ( ) 011 ,, Zztiztv =  for all t and 

z.  This means looking in the +z direction, the transmission line behaves like a resistance equal to 

the characteristic impedance Z0.  Secondly, the voltage and current are invariant along lines 

const.=− uzt   As shown in Fig. 2a, points along such a line move with velocity u in the +z 

direction.  The relation between 


at position z and that at the origin can be expressed as 
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As shown in Fig. 2b, a temporal waveform propagates with velocity u in the +z direction without 

change in shape.  We therefore speak of this as a travelling wave in the +z direction.  Since Z0 is 

positive real, we find i , i.e. there is power flow in the direction of propagation. ( ) ( ) 0,, 11 >× ztvzt



 3

 

Fig. 2 

The solution 
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behaves in much the same way except that the ratio ( ) ( ) 022 ,, Zztiztv −=  and that the solution is 

invariant along lines t + z/u = const.  Since we measure current in +z direction, the first implies, 

if we look towards the -z direction, the line appears like a positive resistance of value Z0.  As 

shown in Fig. 3, points along such lines move with velocity u in the -z direction and that the 

waveform will also propagate in the -z direction without change 
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The power flow is in the -z direction since ( ) ( ) .0,, 22 >− ztvzti   Such a solution is a travelling 

wave in the -z direction. 
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 (a) Fig. 3 (b) 

 

 

4. Excitation of Travelling Waves: 

To excite travelling waves, let us look at a few examples. 

In Fig. 4a a voltage source generating a known voltage waveform Vs(t) is used to excite 

an infinitely long line at z = 0.  Since power can only be supplied by the generator to the line, 

therefore we can only have power flow away from the generator. As a result, to the right there is 

a +z travelling wave while to the left there is a -z travelling wave, i.e. 
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line z=0 line 

(a) 

 

(b) 

 

line (c) line 

Fig. 4 

At z = 0 the voltage across the line is equal to the voltage source voltage, the voltage slightly to 

the right and the voltage slightly to the left. Hence 

)t v) (t, v(t) Vs 00 21 ,(== . 

The current supplied by the source must, however, be the sum of the currents going to the two 

sides, i.e. 

( ) ( ) ( ).0,0, 21 tititI s −=  

The negative sign appears in i2 (t, 0) because it is measured in the +z direction. The above two 

relations are known as boundary conditions which enable us to determine uniquely the voltage 

and current on the line.  The first determines the two waves excited on the two sides, i.e. 
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From these values of current waves the second boundary condition yields the source current 
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We observe that, as far as the source is concerned, the semi-infinitely long transmission on each 

side of the source can be replaced by a resistor equal to the characteristic impedance of the line 

(Fig. 4b). 

In reality, only lines of finite length exist.  Is there some way that can cut off the line on 

the two sides such that on the portion that remains the voltage and current behave in the same 

manner as on the infinite line that we discussed before?  The answer is “yes” because only one 

travelling wave exists on each side.  As previously shown, for each travelling wave the line looks 

like a resistor equal to  without changing the voltage and current distribution in the remaining 

portion (Fig. 4c).  Such terminations are known as matched to the line.  With termination 

resistance other than , Ohm’s law cannot be satisfied by the voltage and current associated 

with one travelling wave.  As a result, a wave in the opposite direction is generated at the 

termination.  This reflection phenomenon will be studied in detail in the next experiment. 

0Z

0Z

Finally, the two sides of the transmission of Fig. 4c can be considered as two lines in 

parallel.  Thus it is only necessary to investigate one of the sides as in Fig. 5.  Note here we have 

added a resistor in series with the voltage source to facilitate the measurement of source current.  

This is the configuration to be studied in the experiment. 
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Fig. 5 

5. Frequency Domain Analysis of Travelling Waves: 

Let the source waveform be sinusoidal such that ( ) { }tj
ss eVt ωRe=V .  The voltage and 

current on the matched transmission line of Fig. 5 can be obtained by replacing t by uz−t , i.e. 
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where 

uωβ =  

For every position the temporal waveform is a sine wave with angular frequency β and period 

ωπ2=T .  For every time the spatial waveform is again sinusoidal with spatial angular 

frequency β and spatial period of wavelength ωπλ 2= ;  β  is also known as the propagation 

constant.  Lines in t, z plane where uzt − = constant represent lines of constant phase for the 

sine wave (Fig. 6).  At position z the phase is delayed with respect to that at position 0 by 
u
zz =  

which is a linear function of frequency.  The velocity u corresponding to these lines is therefore 

also referred to as phase velocity.  In media with dispersion where distortion accompanies 

propagation, velocity of propagation no longer has precise meaning.  However, sine waves will 

always remain sine waves, hence phase velocity retains its physical significance.  One final 

relation between various quantities is 

Tu
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Fig. 6 

For an arbitrary waveform, by means of Fourier integral representation, it is easily seen 

that  
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The advantage of this approach is that in more complex media one finds that the simple 

transmission line equations no longer hold.  However, sine waves are still propagated as sine 

waves with phase delay and perhaps some attenuation.  Furthermore, the phase delay 
u
zz ωβ =  

is not necessarily a linear function of frequency; in other words, the phase velocity may vary 

with frequency.  Such media are said to be dispersive, and waveforms are no longer invariant as 

the wave propagates.  However, knowing the phase velocity u and attenuation e  as a function 

of frequency, the waveforms can be expressed as 
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6. Reflection at the End of a Finite Length Transmission Line: 

Consider the finite transmission line of Fig. 7.  The voltage source driving the line has a 

source resistance 2.  It is terminated at z=L at a resistance RL.  For simplicity first consider 

Rs=Z0, the characteristic impedance of the line. 

 

Fig. 7 

The boundary conditions at the two ends of the line are 

( ) ( ) ( )0,0, tvtiRtV ss +=  

( ) ( )LtvLtiRL ,, =  

The voltage and current on the transmission line can be decomposed into two waves travelling in 

±z direction with velocity u: 
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Here, we stressed the dependence of the +z going wave on the value at the “source” end of the 

line z=0 and the dependence of the -z going wave on the value at the “load” end of the line at 

z=L. 
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The boundary conditions can now be written as 
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We observe the boundary condition (B.C.) at z=0 is greatly simplified if the source resistance Rs 

is equal to Z0, i.e. matched to the line.  In this case the B.C. becomes 
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In fact, the +z going wave neither depends on the length of the line nor on the terminating 

resistor RL.  It is the same as that excited by the source on an infinitely long line.  The B.C. as 

z=L yields 
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i.e. the waveform of the -z going wave a z=L is the same as that of the +z going wave there.  

Physically, v1(t,L) incident at the load causes a reflection and we speak of v2(t,z) as the reflected 

wave with ΓL the reflection coefficient.  ΓL varies between -1 (RL=0), 0 (RL=Z0) and +1 (RL=∞) 

as shown in Fig. 8. 

 

Fig. 8 
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When  reaches the source end it is not reflected because Rs=Z0.  Fig. 9a shows a plot of a 

temporal waveform at various locations while Fig. 9b shows spatial waveforms at various times. 

( ztv ,2 )

 

 (a) Fig. 9 (b) 

7. Multiple Reflection: 

If the source resistance Rs is not equal to Z0, ( )ztv ,2  will be reflected, thus producing 

another +z going wave v  given by ( zt,3 )

 

When this wave hits the load end it is again reflected, yielding a -z going wave 
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Thus, as shown in Fig. 10 there is multiple reflection.   Unless 1=Γ=Γ Ls  ,the amplitude of 

the reflected wave will gradually approach zero. The total voltage and current on the line are 

 

 

Fig. 10 

8. Effect of a Discontinuity: 

When two transmission lines of different characteristic impedances are connected in 

cascade, the discontinuity generates a reflected wave. Fig. 11 shows such a configuration. 

Without loss of generality we assume the two ends are matched to the respective 

characteristic impedances.  We expect a wave ( )zt,1v  incident on the discontinuity at z=L to 

generate a reflected  
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Fig. 11 

wave v  to the left and a transmitted wave ( zt,2 ) ( )zt,3v  to the right.  The boundary conditions at 

the discontinuity are 
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As far as the line to the left of the discontinuity is concerned, it sees a resistance Z0, the 

characteristic impedance of the line to the right.  Both the reflected and the transmitted waves at 

the discontinuity have the same temporal waveform as the incident wave. 

9. Input Impedance: 

Let us return to the finite transmission line of Fig. 7.  When the voltage source is a sine 

wave of angular frequency ω, the voltage and current everywhere on the line are sine waves of 

the same frequency.  Thus 
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where V1 and V2 are the complex amplitudes of the two waves. If the reflection 

coefficient at Z=L is ΓL then 

 

So far we have only considered resistive termination RL where ΓL is real. The voltage and 

current at z = 0 are therefore 

We can define an input impedance of the line looking to the right at z = 0 as the ratio of 

the complex voltage and complex current 

 

We observe the input impedance of a transmission line is a function of the reflection 

coefficient at the end of the line and the total phase shift or electrical length of the line βL 

= ωL/u. 

As an example, consider RL = 0 , i.e. ΓL = -1. The input voltage and current become 

 

and the input impedance 

. 
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Fig. 12 

The input voltage becomes zero when 2βL=2nπ.  Since β=2π/λ, this relation is L=nλ/2 or 

multiples of half a wavelength.  At these frequencies the current will be a maximum and the 

input impedance is zero.  On the other hand, at frequencies where 2βL=(2n+1)π the voltage at 

z=0 is a maximum while the current vanishes.  Thus the input impedance becomes infinite.  We 

have an infinite number of impedance zeros interleaved with an infinite number of impedance 

poles (Fig. 12).  The short-circuited transmission line therefore behaves as a resonator.  The 

impedance is  a transcendental function of frequency.  In a lumped circuit the impedance is the 

ratio of two polynomials of frequency.  This is the main difference between a lumped circuit and 

a transmission line or a distributed circuit. 

It is evident that under sinusoidal excitation the transmission line need not be terminated 

in a resistor to have sinusoidal voltage and currents everywhere.  Any linear termination 

containing R, L, C, M, will also be in the same situation.  Thus we can consider a complex load 

impedance ZL which will produce a complex reflection coefficient 
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The input impedance Zin(ω) expression given before remains valid. 

It is to be noted that with non-resistive termination, the reflected waveform is in general 

different from that of the incident waveform.  A reflection coefficient is only meaningful for 

sinusoidal excitation. 


