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ABSTRACT 
The behavior of backward waves is considered from a 
purely wave propagation point of view.  Beginning with 
the condition that the phase and group velocity vectors are 
anti-parallel a form for the index of refraction is derived 
which results in backwards wave behavior at all 
frequencies.  The dispersion relation for this index is 
found and it is shown that, for the case considered, this 
index is necessarily negative.  The requirement for 
backwards wave behavior –that the phase and group 
velocity are “perfectly” anti-parallel – is then relaxed and 
the situation is considered where these two velocity 
vectors have one or two anti-parallel components (the 
angle between them is between 90° and 270°).  It is 
shown that this implies propagation through an 
anisotropic medium and that backwards wave behavior 
can still occur if at least one of the axes exhibits a 
negative index.  This phenomenon, however, is not 
restricted to the propagation along the negative index 
axes.   
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1. Introduction 

 
Recently, there has been much work dedicated to the 
study of media that exhibit backwards wave propagation 
[1-4].  Although more recent studies have focused on this 
phenomenon in left-handed media (LHM) this 
phenomenon is certainly not restricted to this type of 
media and has been investigated in various right-handed 
media (RHM) such as sheets of plasma [5].  Other RHM 
that have been shown to exhibit backwards wave behavior 
include traveling wave tubes and microwave amplifiers.  
Hence this phenomenon, defined as an anti-parallel 
Poynting vector S

v
 and wavevector k

v
, is not restricted to 

LHM although it is implied for propagation through a 
negative index passband.  When studying backward wave 
propagation it is sometimes more convenient to use the 
group velocity as a substitute for the Poynting vector.  
This substitution, however, is only valid in the passband 
where the two vectors are parallel.  Furthermore, when 
formulating the problem in terms of the group velocity, it 

also more convenient to replace the wavevector with the 
phase velocity.   

 
In this paper we study the backwards wave phenomenon 
from a purely three dimensional wave propagation point 
of view.  In section 2, beginning with the assumption that 
the group velocity and phase velocity are anti-parallel an 
expression for the index of refraction is derived which 
yields backwards waves at all frequencies, and it is shown 
to be identical to the presence of negative index of 
refraction.  The condition that these two vectors are 
perfectly anti-parallel is then relaxed and the case is 
considered where only some of their components are anti-
parallel.  Section 3 discusses anisotropic media where the 
angles between the group velocity and phase velocity are 
calculated for a uniaxial RHM and LHM under some 
conditions.  In section 4 we give our final thoughts and 
conclusions. 

 
2. Backwards Waves 

 
i) “Perfect” Backwards Waves 

 
Let us examine the backward wave phenomenon from a 
three dimensional wave propagation point of view.  
Consider a plane wave propagating in an arbitrary 
medium with phase index n(k).  The question to be asked 
is the following: What functional form for the index will 
lead to the backward wave propagation?  To answer this 
let us consider the expressions for the phase and group 
velocity in such a medium.  The phase and group 
velocities of the propagating plane wave are given by 
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where co is the vacuum speed of light and k̂  is the unit 
vector in the direction of propagation.  To enforce the 
condition that these two velocities are anti-parallel we set 
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the group velocity equal to the negative of the phase 
velocity  
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where d is an arbitrary positive constant which accounts 
for any difference in the magnitudes of the two velocities.  
The solution to this equation represents the index of a 
medium which supports backward wave behavior at all 
frequencies.  Setting d = 1 for simplicity, the solution is 

 
2)( bkkn =  ,   (4) 

 
where b is an arbitrary constant with units m2.  Since k2 > 
0 a negative index of refraction can only result for b < 0.  
The dispersion relation can be calculated from (4) 
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Assuming that only positive frequencies are physical, 
equation (5) results in the dispersion diagram shown in 
Fig. 1.  In branch-I of Fig. 1 the wavevector, k , is 
negative implying a negative phase velocity.  On the other 
hand, the local derivative at any point on Branch-I is 
positive signifying that the group velocity is positive 
everywhere.  In Branch-II, on the other hand, the opposite 
is true and the phase velocity is positive whereas the 
group velocity is negative.  Since the signs of the phase 
and group velocities are opposite everywhere in Fig. 1 the 
index derived from equation (3) does indeed yield 
backwards wave behavior at all frequencies.   

 
In further discussing Fig. 1,   assume that the propagating 
waves are generated by a source at x = 0 and that the 
waves’ energy propagates in the +x direction (i.e. away 
from the source).  Under this assumption the solution of 
Branch-I implies that the phase velocity propagates 
towards the source (in the -x direction) while the group 
velocity propagates away from the source (in the +x 
direction).  On the other hand, Branch-II implies a phase 
velocity which propagates away from the source and a 
group velocity which propagates towards the source.  
Since, in the passband, the group velocity is equal to the 
energy velocity the situation in Branch-II contradicts our 
assertion that the energy of the wave propagates away 
from the source.  Hence, this case is not physical and is 
not a valid solution.  The situation in Branch-I, where the 
group velocity is positive and the phase velocity is 
negative, is the only correct solution.  This branch results 
from choosing b < 0 in equation (4) which is the condition 
for obtaining a negative index of refraction.  The above 
results agree with those derived for a distributed system 
of series capacitances and shunt inductances (i.e. the dual 
of the simple transmission line model) [6].  To our 

knowledge, this is the first attempt to derive these results 
from the full wave (three-dimensional wave) propagation 
point of view. 
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FIG. 1.  Dispersion relation for index given in equation (4). 

 
ii) “Imperfect” Backwards Waves  

 
In the case considered above the phase velocity and group 
velocity are perfectly anti-parallel (that is, the angle 
between them is 180°).  A more rigorous analysis would 
require solving a differential equation similar to that in (3) 
but for waves in which the angle between the phase and 
group velocities has values in the range 90 < θ < 270.  For 
such waves, the phase and group velocities are not 
perfectly anti-parallel, but have anti-parallel components, 
such that they can still be considered as backward waves.  
The equation to be solved has the form 
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where the di (i=x, y, z) are arbitrary constants which 
account for the differences in magnitude and direction 
between the components of the group and phase 
velocities.  Collecting terms with the same ik̂ , equation 
(6) can be separated into three differential equations of 
the form 
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where the i represent x, y, or z.  The solutions to these 
three equations have the form 

                                                 
1 The complexity of this problem could be reduced by 
choosing a coordinate system in which one of the primary 
axes is perpendicular to the plane containing the two 
velocity vectors, effectively reducing the problem to two 
dimensions.   
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Note that if di = -1 for all three solutions the problem 
reduces to the case of perfectly anti-parallel backward 
waves considered above.  If, on the other hand, the di are 
not all identical the index of refraction has different forms 
along the three axes.  This describes the case of an 
anisotropic medium.  As will be shown in the next 
section, to achieve backward wave behavior we must 
choose bi < 0 for at least one of the solutions. 

 
3. Anisotropic Media 

 
For simplicity let us consider a medium where the 
permeability is isotropic and the permittivity is 
anisotropic and given by 

 
















=

z

y

x

ε
ε

ε
ε

00
00
00

.  (9) 

 
Fig. 2 shows the k-space diagram for an electric field 
polarized in the kx - ky plane and parameters εx = -2, εy = 1, 
εz = 1, and µ = 1.  When the electric field is polarized in 
the ky direction the index is positive and the wave 
propagates.  For polarizations in the kx direction the index 
is imaginary and there is no propagation.  If we take the 
negatives of all the parameters used in generating the k-
surface (i.e. εx = 2, εy = -1, εz = -1, and µ = -1) the 
resulting k-space diagram will be identical to that in Fig. 
2.  However, in this case a ky polarized wave sees a 
negative index instead of a positive one.  The kx 
polarization is again cutoff just as in the previous case due 
to the imaginary value of the index.   
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FIG. 2.  k–Space diagrams for two anisotropic media.  In both 
cases the media are uniaxial with  εy = εz.  In the RHM case the 
parameters are εx = -2, εy = 1, εz = 1, and µ = 1.  The parameters 
in the LHM case are εx = 2, εy = -1, εz = -1, and µ = -1.  Because 

the parameters in the LHM case are simply the negatives of 
those in the RHM case their k-surfaces are identical. 

 
In each case, a cut was taken in the kx - kz plane and the 
angle between the group and phase velocity was 
calculated as a function of kx (Fig. 3).  For the RHM case 
the angle between the group and phase velocity begins at 
0° when the wave begins to propagate (kx = 1) and 
approaches 90° asymptotically in the high kx limit (solid 
line).  In the LHM case, on the other hand, the angle is 
180° at the onset of propagation (kx = 1) and decreases 
asymptotically towards 90° in the high kx limit (dashed 
line).  The results in Fig. 3 imply that the dot product 
between the phase velocity and group velocity vectors is 
always positive for the RHM, and negative for the LHM.  
In the LHM case, further analysis of the phase and group 
velocity vectors reveals that their components have the 
same sign in the kz direction and that the backwards wave 
behavior is a result of their kx components, which have 
opposite signs.  Therefore, to achieve backwards wave 
behavior not all of the components of the phase and group 
velocity vectors require opposite signs.     

0

30

60

90

120

150

180

0 1 2 3 4 5
kx

A
ng

le
 (d

eg
re

es
) RHM

LHM

 
FIG. 3.  Calculated angle between the phase and group velocity 
vectors for the RHM and LHM cases in FIG. 2. 

 
 

4. Conclusions 
 

The conditions required for backward wave propagation 
were investigated.  This was done from a purely three 
dimensional wave propagation point of view starting with 
the assumption that the phase and group velocity were 
either perfectly anti-parallel or that some of their 
components were anti-parallel.  In both cases the form of 
the index of refraction necessary to yield backwards wave 
behavior at all frequencies was derived.  In the first case 
the index is isotropic and must necessarily be negative to 
yield this behavior.  In the second case the medium is 
anisotropic and at least one of the axes is required to 
exhibit a negative index.  The angles between the phase 
velocities and group velocities were calculated for RHM 
and LHM uniaxial media and it was shown that in the 
RHM case the angle varied from 0° to 90° degrees while 
in the LHM it varied from 180° to 90° degrees.  Hence, in 
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the RHM the dot product between the vectors is positive 
whereas in the LHM it is negative.  
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